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ABSTRACT

ARTICLE INFO

The growing global electricity demand and increasing integration of renewable energy
have intensified the need for efficient and resilient power distribution systems. Power
losses in distribution networks remain a persistent challenge, increasing operational costs
and reducing efficiency. This study investigates the optimal placement and sizing of
battery energy storage systems to minimize losses in a 148-bus distribution network. A
Chaotic Coyote Optimization Algorithm is proposed, which enhances the conventional
Coyote Optimization Algorithm by incorporating chaotic maps to improve exploration,
prevent local optima trapping, and accelerate convergence. Two scenarios were
evaluated: (i) a grid-connected system and (ii) a grid-connected system with solar
photovoltaic integration. For each scenario, single-unit and dual-unit battery energy
storage configurations were tested using simultaneous and sequential optimization
strategies. The Chaotic Coyote Optimization Algorithm consistently outperformed the
Coyote Optimization Algorithm, Whale Optimization Algorithm, and Particle Swarm
Optimization, achieving faster convergence and greater solution accuracy. Results
showed that dual-unit battery energy storage configurations significantly reduced losses
compared to single-unit setups, with the best case (dual-unit plus solar photovoltaic
integration) achieving a 51.4 percent reduction in active power losses and an
improvement in minimum bus voltage from 0.927 per unit to 0.975 per unit. The study
demonstrates that combining battery energy storage with renewable integration not only
reduces distribution losses but also enhances voltage stability. The proposed Chaotic
Coyote Optimization Algorithm framework provides a robust methodology for energy
storage optimization, offering valuable insights for utilities in planning sustainable, cost-
effective, and resilient smart grids.
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1. Introduction

total generated energy (Al-Mahroqi et al., 2012; Tushar

The global electricity demand has been on an
inclining trend with a growth rate of 2.4% annually and a
projected rise to over 50% by 2050 (IEA, 2023; Mir et al.,
2020). Despite increased global generation capacity due
to the upscale of renewable energy to more than 440 GW
(IEA, 2023), energy transfer from the generation side to
the demand side remains a challenge in power networks
due to power losses (Sadovskaia et al., 2019). Studies
have reported that about 10% of power losses occur in
transmission and distribution networks, with over 40% of
the total power losses occurring in the distribution
networks accounting for a total loss of 4% to 37% of the

* Corresponding author. e-mail: cokinda@mmust.ac.ke.

et al., 2020; Wu et al., 2022; Yang et al., 2020).
Therefore, power loss reduction is imperative in energy
utilization and economic development.

Power loss consists of two parts, i.e., technical
electrical power losses (Sadovskaia et al., 2019) and
commercial (non-technical) power losses (Carr &
Thomson, 2022). The former is composed of variable loss
and fixed loss in power systems, while the latter is
caused by transgressions in energy management, theft,
and statistical errors (Wu et al., 2022). This study will
consider the technical power losses. Variable technical
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power loss is proportional to the square of the load
current and accounts for z to g of the total technical

losses in a distribution network (Abd el-Ghany et al.,
2021), while the fixed technical power loss accounts for
1/4 to 1/3 of the total technical losses in a distribution
network (Electrical Equipment, 2023; Gasperic, 2011).
The factor of power loss introduces complexities in
power system design in matching generation and
demand, and the transmission of power losses from
generators to loads via networks and transformers, thus
resulting in higher electricity costs. Additionally, the
annual costs for power losses consist of generation,
transmission, and distribution (Abeysinghe et al., 2020;
Sadovskaia et al., 2019). Thus, power loss has a negative
impact on the whole power system network, and
consequently on the whole community. Distribution
losses not only reduce the overall efficiency of the
system but also result in increased operational costs for
utility providers (Wang et al., 2018). Therefore,
mitigating distribution losses is essential to improving
the overall performance of power distribution systems.

Various conventional techniques have been
employed to reduce distribution losses, i.e., network
reconfiguration, voltage regulation, and capacitor
placement (Agliero, 2012). Additionally, several studies
have reported on the solutions to power loss reduction
in power distribution networks such as feeder
reconfiguration (Abdelaziz et al., 2016; Hesaroor & Das,
2019; Li et al., 2019; Shaheen et al., 2021; Wu et al.,
Todorovski, 2020; Shaheen et al., 2021; D. Zhang et al.,
2008), distributed generation (DG) (Hesaroor & Das,
2019; llo et al., 2003; Ufa et al., 2022), and smart
metering (llo et al., 2003; Mbungu et al., 2020).

However, studies have reported on the shortcomings
of these techniques. Feeder reconfiguration suffers from
high complexity and cost (Al-Mahroqgi et al., 2012;
Civanlar et al., 1988; Kashem et al., 2000), disruptions
of operations (Anteneh et al., 2021; Jose & Kowli, 2019;
Tian et al., 2016), limited applicability (Al-Mahroqi et
al., 2012; Kavousi-Fard & Niknam, 2013; Sultana et al.,
2016), unsustained effectiveness due to the dynamic
nature of loads (Azizivahed et al., 2018, 2019; Lotfi &
Shojaei, 2023), and dependency on advanced control
systems (Al-Mahroqi et al., 2012; Zhang et al., 2021).
Despite VAR compensation and capacitor placement
being valuable techniques in loss reduction and voltage
control in distribution networks, their applicability is
limited by several setbacks, i.e., Capital Intensive
(Machowski et al., 2020), complexities in Maintenance
(Bansal, 2005; Kothari, 2012), inflexibility to adapt to
dynamic load variation (Chakrabarti & Halder, 2022),
overcompensation problems (Das, 2002; Liu et al., 2014),
and introduction of switching transients into the system
(Bisquert, 2023; Jami et al., 2020). Injecting a small
amount of DG reduces the power losses to a minimum
level (threshold) after which an increase in DG increases
the losses in the network (Al-Mahroqi et al., 2012).
Therefore, optimal placement and sizing of DG in the
distribution network is still a challenge in optimal loss
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reduction based on DG technology. Additionally, with the
current high penetration of renewable energies
characterized by high intermittency, the problem of loss
reduction in distribution networks has become complex
due to frequency fluctuations and voltage quality
problems, thus increasing energy losses in the
distribution networks (Wu et al., 2022). A report by
Adefarati & Bansal (2016) stated that proper sizing and
location of renewable units can reduce feeder overload
and power losses. Similarly, Marneni et al. (2015)
reported that the optimal placement and sizing of DG in
the distribution network improves voltage profile,
reduces system power losses, improves power quality,
relieves power grid congestion, and reduces the
associated costs.

Battery Energy Storage Systems (BESS) have emerged
as a promising solution for mitigating distribution losses
and enhancing grid reliability (Prakash et al., 2022). BESS
offers several advantages, including fast response times,
flexibility in operation, and compatibility with
renewable energy sources (Datta et al., 2021).
Therefore, by strategically deploying BESS within
distribution networks, utilities can optimize energy flow,
reduce peak demand, and improve voltage stability
(Kumar et al., 2019). Additionally, BESS can provide
ancillary services such as frequency regulation, voltage
support, and backup power during outages (Rancilio et
al., 2020). Furthermore, BESS can mitigate the effects
caused by the intermittency of renewable energy
(Dowling et al., 2020; Wong, Ramachandaramurthy,
Taylor, et al., 2019). Moreover, they can improve and
compensate for the stability and flexibility of the power
system during generation loss, load fluctuations, and
transmission loss (De Sisternes et al., 2016; Wong,
Ramachandaramurthy, Taylor, et al., 2019). Therefore,
power loss in a network can be efficiently reduced by the
application of BESS to balance the power exchange
(Wong, Ramachandaramurthy, Walker, et al., 2019).
However, the efficiency of loss reduction is influenced
by the size and location of the BESS (Rajamand, 2020;
Wong, Ramachandaramurthy, Walker, et al., 2019).

The determination of the optimal location and sizing
of BESS is a complex non-deterministic polynomial-time
problem (Wong, Ramachandaramurthy, Walker, et al.,
2019) whose solution is affected by power network
requirements, total load demand, network topology,
total generation capacity, and the applied BESS
technology (Wong, Ramachandaramurthy, Taylor, et al.,
2019; Wong, Ramachandaramurthy, Walker, et al., 2019;
Yuan et al., 2020). Several studies have applied different
techniques to determine the optimal sizes and locations
of BESS in power distribution networks for loss reduction.
Giannitrapani et al. (2016) developed a clustering
technique for the optimal placement and sizing of BESS
in a radial electricity network. The study established
that the optimal location of the BESS units was on a
critical bus. Zhao et al. (2015) introduced a long-term
Wind Power Time series technique to optimally locate
and determine the capacity of BESS based on the
charging and discharging cycles of the BESS. A cost-based
approach was presented by Carpinelli et al. (2013) to
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determine the optimal location and sizing of BESS in an
unbalanced low-voltage microgrid. The minimal and
maximal loss-sensitive factors (LSF) value was adopted
by Sardi et al. (2015) for optimal location selection for
BESS. Algorithms such as the Particle Swarm
Optimization (PSO) algorithm (Chen et al., 2019; Jin et
al., 2020; Rajamand, 2020; Shi & Luo, 2017; Zhu et al.,
2018), the genetic algorithm (GA) (Ghofrani et al., 2013;
Khaki & Das, 2019), firefly algorithm (FA) (Ai et al., 2014;
Wong et al., 2014), bee colony algorithm (Das et al.,
2018), bat algorithm (Bahmani-Firouzi & Azizipanah-
Abarghooee, 2014), Whale optimization algorithm (WAQ)
(Wong, Ramachandaramurthy, Walker, et al., 2019),
Coyote Optimization Algorithm (COA) (Yuan et al., 2020)
have been applied in loss management and to and
enhance system performance. However, most of these
algorithms suffer from a slow convergence rate due to
getting trapped in the local minimum (Jordehi, 2015;
Wong, Ramachandaramurthy, Walker, et al., 2019; Yuan
et al., 2020). Therefore, there is a need to improve these
optimization algorithms with the ability to balance
between exploitation and exploration of the meta-
heuristics (Cao et al., 2019). The main objective of this
research study is to determine the optimal placement
and sizing of BESS to reduce the power losses in a
distribution network based on the chaotic coyote
optimization algorithm (CCOA) in a 148-bus distribution
network with a nominal voltage of 11 kV.

2. Materials and methods

This study focuses on the optimal placement and
sizing of a BESS in a power distribution network to
minimize power losses based on CCOA. For a
comparative analysis, two scenarios were explored, i.e.,
firstly, a grid-connected distribution system (S;) and
secondly, a grid-connected distribution system with a
solar photovoltaic (PV) system (Sp,). For each scenario,
a single BESS (S;5; and Spy5;) and two BESS (S5, and
Spvgz) were implemented for further comparative
analysis. Therefore, six simulations (models) were
developed. Fig. 1 presents the research design flow for
this introduced study.

Distribution line
Modd

——  Lonad Flow Analysis

£

PV BESS

Fig. 1: The research design flow

2.1. Data collection and system modeling
For this study, the Kisumu-Ahero distribution line
served as the study area, and the following
comprehensive data were collected from the line
between the period of September 2024 and December
2024.

Transmission Line Impedance and Configuration:
Detailed impedance data for each line section were
obtained to model power flow accurately. This data was
essential for calculating voltage drops and power losses
across the network.

Lamped Load Demand: Real and reactive power
demands at each bus were recorded. Accurate load data
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ensures realistic simulation outcomes and optimizes
BESS performance where demand variability is highest
(Zhang et al., 2023).

Transformer and Bus Details: All transformer ratings
and bus voltage level specifications were collected to
reflect real-world conditions (Dzafic¢ et al., 2014).

The Electrical Transient Analyzer Program (ETAP®)
System (Liu, 2019; Shertukde, 2019) was applied in this
study to model the Kisumu-Ahero distribution line. The
one-line diagram of the distribution system is given in
Fig. 2, and the summary of the data used in the
simulation is given in Table 1.

Table 1: A summary of the data used in the simulation of the
Kisumu-Ahero distribution line.

Electrical Components Number
Buses 148
Lamped loads 69
Transmission lines 205
Grid 1

2.2. Chaotic Coyote Optimization Algorithm
2.2.1. Coyote Optimization
The COA is a nature-inspired metaheuristic

algorithm introduced by Pierezan & Coelho (2018), based
on the social and survival behavior of coyotes (Canis
latrans) whereby multiple agents, "coyotes,” work
collectively to find optimal solutions to a given problem.
Thus, the algorithm mimics the adaptation of coyotes in
changing environments, optimizing solutions by evolving
over iterations through social learning and adaptation
mechanisms (Pierezan & Coelho, 2018). The COA is a
population-based technique that applies both swarm
intelligence and evolutionary heuristics, thus, the
algorithm simulates the coyote's experiences and social
structure behavior (Yuan et al., 2020).

Representation of Coyotes in the Algorithm
In COA, each coyote represents a potential solution
to the optimization problem (a potential solution in the
solution space, characterized by a position vector in a
multidimensional space). Each pack of coyotes is
represented as a group of individuals with certain
"positions,” indicating values within the solution space.
The position of each coyote changes iteratively,
mimicking the search for resources and survival
behaviors within a pack. Therefore, these positions are
modified iteratively as the algorithm runs, mimicking the
movement of coyotes in search of food. The initial
coyote positions are typically assigned randomly within
the feasible solution space, according to Eq. 1.
xl] = xrjnin + r(x‘r];lax - xrjnin) (1)

Where x/ is the position of the i‘" coyote in the

j™ dimension, x; .. and x,,, defines the bounds for each
dimension, and r is a random value in the range
[0,1] (Pierezan & Coelho, 2018). The initial position of
each coyote is spread across the feasible solution space,
enhancing exploration in the early stages of the
algorithm (Pierezan & Coelho, 2018).
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Fig. 2: The modeled Kisumu-Ahero distribution line
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Social Learning in the Pack

Coyotes exhibit pack behavior, a critical aspect of
COA. Within each iteration, social interaction among
coyotes allows them to learn from one another, updating
their knowledge and improving their solutions towards
optimal solutions. This interaction is mathematically
represented by calculating the social position of the
pack, which acts as a guide for individual coyotes. The
social position (xs,iq;) is calculated as the median of the
positions of all coyotes in the pack, shown in Eq. 2

Xsocial = median({xi}?]:l) )

Where N is the number of coyotes in the pack. The
algorithm better handles outliers and creates a more
robust search process by focusing on the median rather
than the mean (Pierezan & Coelho, 2018).

Adaptation Mechanism and Mutation

The adaptation mechanism and mutation process are
central to enabling coyotes (representing solutions) to
explore the solution space effectively. The adaptation
mechanism allows each coyote to adjust its position
based on social information, while mutation introduces
randomness to prevent premature convergence.

Adaptation Mechanism

The adaptation mechanism in COA allows each
coyote to learn from the pack’s social position, Xs,ciq:-
The updated position for each coyote incorporates this
social influence along with its current position (x;),
leading to gradual improvements toward an optimal
solution. The new position for the it"coyote is computed
according to Eq. 3.

xlnew = x; + 11 (Xsociar — *i) 3)

Where x[**"is the updated position, x; is the current
position, x,.q 15 the social position of the pack, and
r,is a random value in the range [0,1] that adds
variability to the learning rate (Pierezan & Coelho,
2018). Each coyote is pulled towards the pack’s social

position, but allows some degree of variation due to 7y,
which introduces adaptability without rigidly enforcing
convergence.

Mutation Process

Each coyote undergoes a mutation process, ensuring
diversity in the search and avoiding premature
convergence. This prevents the algorithm from
stagnating and encourages exploration. This is achieved
by randomly selecting another coyote from the pack and
generating a new candidate position, i.e., each coyote
randomly selects another coyote’s position Xx,indom,
from the pack and modifies its position based on it. The
new position is calculated according to Eq. 4.

new _
Xi

= x; + 11 (Xsociar — Xi) + T2 (Xrandom — %i) ©))
Where x,4n40m iS the position of a randomly selected
coyote, and r, are random values in the range [0,1]
adding stochasticity (Pierezan & Coelho, 2018). The
adaptation term 1 (xg0ciq — X;) aligns each coyote
toward the social position, encouraging the coyotes to
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converge toward the median knowledge of the pack. This
helps balance exploration and exploitation, moving
coyotes toward potentially optimal areas of the search
space. The mutation term r,(X,gnaom — X;) introduces
randomness, encouraging exploration by moving the
coyote away from the current position in the direction
of another random coyote’s position. The combination of
adaptation and mutation helps COA maintain a balance
between exploration (searching new areas) and
exploitation (refining known areas). After generating the
new position x**, the coyote’s fitness is evaluated to
determine if it should keep this new position. This
process is essential in selecting better solutions over
iterations, leading to convergence towards the optimal
solution.

Selection and Survival of Coyotes

The selection and survival of coyotes is a critical
phase that ensures only the fittest solutions are retained
for future generations. This process mimics natural
selection, where coyotes (potential solutions) with
better fitness survive, while others are eliminated,
guiding the algorithm toward optimal solutions.
Therefore, once new candidate solutions are generated,
a fitness function is applied to evaluate each solution.
Coyotes with better fitness survive to the next iteration,
simulating natural selection. This selection process
refines the population, pushing the coyotes toward
optimal solutions. The algorithm terminates when a
stopping criterion, such as a maximum number of
iterations or a desired fitness level, is met.

To evaluate the quality of each coyote (solution), a
fitness function f(x;) is applied, the fitness function
depends on the specific optimization problem; for
instance, it could represent the objective function in
minimization or maximization tasks. Each coyote’s
fitness is calculated according to Eq. 5.

f(x;)) = 0bj (xy) %)

During the Adaptation Mechanism and Mutation phase,
each coyote in the pack generates a candidate position
x[**". Once the candidate position is created, its fitness
f(x**") is calculated and compared with the original
position f(x;). The selection process keeps the position
with the better fitness as given in Eq. 6.

(G < f ()

¢ {xi otherwise

(6)

In each generation, a few random coyotes are replaced
to maintain diversity in the population. This replacement
mechanism mimics the introduction of new coyotes into
the pack, enhancing exploration. For a given coyote x,,
it is randomly replaced with a new position within the
feasible space according to Eq. 7. This ensures a portion
of the population is periodically refreshed, preventing
local optima entrapment.

Xk = Xmin 7 Xmax — Xmin) @)

After applying selection and replacement, the pack is
updated with the fittest coyotes to proceed to the next
iteration. The survival process is governed by the
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principle of retaining the best solutions while
introducing new ones to maintain a balance between
exploration and exploitation. This selection and survival
approach in COA enables it to efficiently explore the
solution space while converging toward optimal
solutions, making it effective in solving complex
optimization problems.

2.2.2. Chaotic Coyote Optimization

The Chaotic Coyote Optimization Algorithm (CCOA)
is an evolutionary computation technique that combines
traditional optimization mechanisms with chaotic
mapping to enhance search efficiency and avoid local
minima, making it highly effective in solving complex,
multimodal optimization problems (Pierezan et al.,
2021; Zhang et al., 2023).

The CCOA hybrid approach takes advantage of
chaotic maps, which are deterministic yet appear
random, offering improved randomness over standard
pseudorandom number generation. Chaos theory,
introduced by Lorenz (1963), indicates that even simple
deterministic systems can exhibit unpredictable, chaotic
behavior over time. Therefore, this property makes
chaotic maps a valuable tool in optimization, allowing
CCOA to explore the search space more effectively than
traditional approaches (Naanaa, 2015).

Principles of Chaotic Behavior

Chaotic behavior can be defined as deterministic yet
highly sensitive to initial conditions, leading to a
butterfly effect where small changes in input can
produce vastly different outcomes (Cattani et al., 2016;
Lorenz, 1963). In optimization, chaotic maps (Eq. 8) help
prevent the algorithm from becoming stuck in local
minima by maintaining diversity within the population
(Wang et al., 2023).

Xn+1 = f(xn) =1x, (1 — xy) ®

Where f is a nonlinear function, i.e., logistic map, r is a
control parameter, typically between 3.57 and 4.0, to
ensure chaotic behavior.

Coyotes’ Social Structure and Optimization

Coyotes, highly social animals, live in packs with a
hierarchy and specific roles (Gifford et al., 2017). This
social behavior, when adapted to CCOA, means that each
candidate solution, or coyote, in the optimization
process is part of a virtual pack (Naveen & Prathap,
2023). The algorithm is initialized by creating multiple
packs, where each coyote represents a potential solution
(Wu et al., 2022). During each iteration, coyotes within
a pack communicate, updating their positions based on
pack leaders and other members (Nguyen et al., 2021).
The position update of each coyote x; is performed
according to Eq. 9.

xi(t+ 1) = 250 + a (I —x,;©0) + B (py — 20, ®O) ()

Where x; ;(t) is the position of the j™ coyote in the
it" dimension at iteration t, l; represents the pack
leader’s position, and p; is a random position
influenced by other coyotes within the pack.
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Parameters a and 8 are random weights between 0 and
1, ensuring exploration and avoiding local minima (Abd
Elaziz et al., 2021).

Algorithm 1: The Chaotic Coyote Optimization Algorithm
Input: Number of packs (P),
Number of coyotes per pack (N),
Chaotic map (Y¢41)
Max iterations (T)
Control parameter (r) for chaotic map
Objective function (f)
Output: Position and fitness of the best coyote as the
optimal solution

1 Initialize each coyote’s position randomly in the search
space.
2 For each P
3 Calculate the fitness (objective function value) of
each coyote.
4 Identify the coyote with the best fitness as the pack
leader.

5 end

6 Set iterationt = 1
7 While t < T do

8 Find x; ;(t + 1)

9 Find ¥ =717:(1 —72)
10 Set chaotic factorsa =y, andf =1—-y,
11 For each coyote i in N
12 Update x/**" = x; + 1y (Xgociar — Xi) +
73 (Xrandom — %i)
13 Find f(x;) = Obj (x;)
14 Update x;
15 end
16 Randomize coyote behavior y, ., = ry.(1 —y;)
17

Update x,;(t + 1) = x,,(t) + 7 (a (b- xl,j(t))) +

B (Pj - Xij (f))
18 end

Chaotic Integration in CCOA

To integrate chaotic behavior, the position update is
modified by incorporating chaotic maps (Acikkapi &
Ozkaynak, 2020). The algorithm introduces controlled
randomness in the update equation by using a chaotic
sequence, which enhances exploration (Acikkapi &
Ozkaynak, 2020). Eq. 10 presents the incorporation of
the logistic map for generating chaotic sequences.

Yerr = 1Ve(1 —vp) (10)

Where v, is the chaotic parameter at iteration t. This
chaotic sequence can influence a and g in the position
update, ensuring diverse movements (Heidari et al.,
2020).

Xt +1) = x;;() +ve (a (l]- - xi‘j(t)))
+ 8 (p - x:;() a1

The updated chaotic position is performed according to
Eq. 11. Therefore, the algorithm explores the search
space more effectively, leveraging chaotic behavior to
avoid premature convergence. The CCOA is summarized
below in Algorithm 1.

2.2.3. Optimization Problem Formulation
The optimal placement and sizing of BESS in a power
distribution network is a complex optimization problem
that aims to minimize power losses while satisfying the
technical and operational constraints. This study
formulates the problem mathematically, defining the
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objective function, decision variables, and constraints,
and finally, integrates the CCOA to solve the problem
efficiently.

The primary objective of this study was to minimize
the total active power losses in the distribution network.
The power loss (P,,s) in a distribution system can be
calculated using the bus conductance and voltage values
according to Eq. 12 (Shaheen et al., 2021; Wu et al.,
2022)

Np Np

Pross = 2 2 Gy (VZ + V? — 2ViVicos(6; — 6)) (11)

i=1j=1

Where, N, is the total number of buses in the system, G;;
is the conductance between the i** and j** bus, V;,V; are
the voltage magnitudes at the i** and j®* bus,
respectively, and 6;, 6; are voltage angles at the it" and
j*" bus, respectively. Therefore, the objective function
f is the minimization of the P, as given in Eq. 13.

f = min(Pyss) (12)

Additionally, the optimization problem may also
consider other objectives such as improving voltage
profiles, reducing operational costs, or enhancing system
reliability. However, for this study, the focus remains on
minimizing power losses, as it directly impacts the
efficiency and economic performance of the distribution
network (Sadovskaia et al., 2019; Wu et al., 2022).

The decision variables for this study were the
location of BESS (L,) and the size of BESS (S;). Ly is a
binary variable indicating whether a BESS is installed at
a specific bus, while S, is the rated power (kW) and
energy capacity (kWh) at each selected location.
Therefore, for a given distribution system with k& BESS
units, the decision variables can be represented in a
vector form given in Eq. 13, where each x; corresponds
to the L, and S,of the k" BESS unit. The optimization
algorithm searches for the optimal combination of these
variables to minimize f.

X = [xq1, X5, X3, 0o, X (13)

The optimization problem was subject to several
technical and operational constraints to ensure feasible
and practical solutions. These constraints include: Power
Balance Constraints (The total power injected into the
network must equal the sum of the total power demand
and losses, i.e., nodal power balance for real and
reactive power (Dzafic et al., 2014)), voltage constraints
(The voltage magnitude at each bus must remain within
permissible limits to ensure system stability and
compliance with standards for this study it was set to
1.00 pu (Kumar et al., 2019)), BESS capacity constraints
(The size of each BESS unit must be within feasible limits
based on available technology and economic
considerations, i.e., the physical limits of BESS in terms
of charging and discharging capacities and energy
storage limits (Rajamand, 2020)), and BESS placement
constraints (Each BESS unit can only be placed at a bus
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that is pre-qualified based on
accessibility, and technical viability).

load demand,

The optimization was performed over a 148-bus
network with a nominal voltage of 11 kV, modeled using
ETAP®. The decision space was large due to the high
number of buses and potential BESS sizes, thus
necessitating a robust search algorithm. The use of CCOA
provides enhanced exploration and exploitation through
chaotic dynamics, as it avoids premature convergence by
integrating randomness from logistic maps (Acikkapi &
Ozkaynak, 2020; Pierezan et al., 2021). For each
candidate solution (set of BESS placements and sizes),
the power flow analysis was conducted. The fitness value
was computed based on the total P, resulting from the
configuration. If multiple BESS were used, the fitness
was aggregated over the contribution of each unit. The
candidate solutions were ranked, and the best-
performing ones were retained and evolved through
CCOA processes such as chaotic mutation, pack learning,
and survival dynamics.

To handle constraint violations and to discourage the
algorithm from selecting infeasible solutions while
allowing for soft constraint handling, penalty functions
were incorporated into the objective function. The
modified fitness function is given in Eq. 14, where, 1,
and A, are the penalty coefficients for voltage and BESS
size violations, respectively, and H, and H,,, are the
penalties for voltage and BESS size Vviolations,
respectively.

F = Pioss + MHy + A3 Hpess (14)

As already mentioned, the study considered two
scenarios, i.e., S;5; and S,5; and S;z, and S,z, as
summarized in Table 2. Additionally, under these
scenarios, two optimization techniques procedures were
applied, i.e., Simultaneous Optimization (Sim_Op) step
and Sequential Optimization (Seq_Op) step regarding the
location and size of BESS.

Table 2: A summary of all the established models and a description
of their objective function

Scenario PV Integrated “BESS Objective
Units

Sy No 1 Minimize P

S No 2 Minimize PS%.

5; Yes (2 PV) 1 Minimize )

Sz Yes (2 PV) 2 Minimize P®

loss

(2

Where Plgl) power loss in S; and Plos) power loss in Spy

Simultaneous Optimization Steps

In the Sim_Op step, both location and size are
treated as decision variables in a single vectorized
solution space, optimized concurrently using the CCOA.
Therefore, the decision variable vector becomes [x;] =
[Li, S ], for a single BESS while [x;] = [Lg, Sk, Ly, S ] for
a two BESS and the objective function is given in Eq. 15
for S; and Eq. 17 for Spy, as given in Table 3.

Sequential Optimization Steps

In this approach, the location of the BESS is
optimized first, assuming a predefined size. Once the
location(s) are fixed, sizing is optimized in a second
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phase, using a narrowed-down search space. With a fixed
BESS size (Sfixeq) assumed, the decision variable contains
only the location L,. Thus, the objective function is
given in Eq. 16 for S;and Eq. 19 for Sp,. Once the
optimal location(s) are identified, sizing becomes the
next optimization step. The decision variable contains
only the size S,.Therefore, the objective function is
given in Eq. 17 for S; and Eq. 20 for Spy,.

Table 3: The objective function for each optimization problem

Scenario Objective function Description
S Sim_Op minF = f(L,,S,) Vke{lor2} (15)
Seq_Op min Fy = f(Ly) Spixeq is fixed (16)
min F, = f(S|Lg = L) (17)
S, Sim_Op min F = f(Ly, Sk, Poor, Povz) (18)
Seq—op min Fl = f(Lkl valrppvz) (19)
min F, = f(Si|Ly = L B,,)  (20)

2.2.4. Optimization Evaluation

This study aims to optimally place and size BESS in a
power distribution system to minimize losses in the
network. A grid-connected distribution system was
applied as the base case (S;) in this study. Therefore, a
comparative analysis was performed between S;, S¢z4,
See2> Spvy Spye1, Spvez. The performance of the models
was evaluated based on the established Power Loss
values. The task being a minimization task, the best
model had the lowest Power Loss. Additionally, a
comparison with other optimization techniques, i.e.,
COA, WOA, and PSO, was also performed to evaluate the
performance of the proposed CCOA technique.

2.2.5. Particle Swarm Optimization (PSO)
Algorithm

PSO is one of the most widely used algorithms in this
domain is the PSO algorithm. Inspired by the collective
behavior of birds flocking or fish schooling, PSO models
each candidate solution as a “particle” in the search
space that adjusts its position based on its own
experience and that of neighboring particles (Cuevas et
al., 2020; Neshat, Adeli, Sepidnam, Sargolzaei, & Toosi,
2012). PSO has been used effectively to minimize power
losses and improve voltage stability by identifying
optimal BESS sizes and locations (Chen et al., 2019; Jin
et al., 2020; Rajamand, 2020). However, PSO has
limitations, particularly its tendency to become trapped
in local optima, especially in high-dimensional or
multimodal objective functions, which undermines its
reliability in complex optimization tasks (Jordehi, 2015).

In PSO, each particle represents a potential solution
in the search space (Shami et al., 2022). It operates by
initializing a group (or "swarm”) of particles that move
through the problem’s solution space to find the optimal
solution. Each particle represents a potential solution
and is characterized by two vectors, i.e., the position
vector x; (representing the current solution) and velocity
vector v; (representing the direction and magnitude of
the particle’s movement in the solution space) as given
in Eq. 21.

o =t b el - xf) Fen@ et —x)
- @
L

xft = xt + vf
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Where w is the inertia weight (linearly decreased over
iterations), balancing global and local search. A larger w
encourages exploration, while a smaller w promotes
exploitation. ¢; and ¢, are acceleration coefficients,
guiding the particle toward personal and global best
positions, respectively. r; and r, are random numbers in
[0, 1] that introduce stochasticity into the movement,
preventing deterministic traps.

Each particle adjusts its trajectory based on two key
pieces of information: Its own best-known position p?¢st
and the globally best-known position g?¢st found by the
swarm. ¢;7; (p?est — x!) is a Cognitive Component whose
task is to encourage the particle to return to the best
solution it has found so far. While c,r,(g?¢¢ — x}) is the
Social Component that encourages movement toward
the best solution found by the swarm. To ensure
particles do not escape the feasible space, boundary
conditions are enforced by clamping velocities by setting
vi*! € [Vmax, Vmax] and restricting positions to
problem constraints, i.e., voltage boundaries.

2.2.6. Whale Optimization Algorithm (WOA)

The WOA is popular for its simplicity and search
strategy, which is based on the bubble-net feeding
method of humpback whales (Abualigah et al., 2024;
Amiriebrahimabadi & Mansouri, 2024; Majumdar, Mitra,
Mirjalili, & Bhattacharya, 2024). Wong et al. (2019) used
WOA to reduce losses through optimal BESS configuration
and found it more effective than traditional PSO and GA
methods. However, WOA can also get stuck in
convergence under certain conditions, showing a need
for better hybrid or adaptive variants (Majumdar et al.,
2024; Nadimi-Shahraki, Zamani, Asghari Varzaneh, &
Mirjalili, 2023).

The WOA algorithm operates in two phases. The first
phase is the Exploitation stage, which includes the
Shrinking Encircling Mechanism and Spiral Updating
Position. The second phase is the Exploration stage,
which focuses on the Search for Prey.

In the Exploitation stage, the Humpback whales
locate and encircle prey, a behavior reminiscent of the
WOA algorithm. Operating on the assumption that the
precise location of the optimal design within the search
space is unknown, the algorithm regards the current best
solution as representative of the target prey or as being
close to the optimal solution. Upon ascertaining the best
solution, the remaining search agents adjust their
positions toward this optimum solution. This process is
formally defined by Eq. 22.

D=[c-X®-x® 22)
Xt+1)=X1t)-4-D

Where t is the number of iterations, X* is the position
vector of the current best solution, X is the position

vector, and A and C are coefficient vectors and are
computed based on Eq. 23 (Mirjalili & Lewis, 2016)

o By
I

2a-_)r—a (23)
2-r
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Where 7 is a random vector within the range of zero to
one and a is linearly decreased from two to zero during
iteration. The shrinking encircling mechanism is realized

through the decrease of @. Therefore, A is decreased
throughout the iteration within the interval [—a a].
Hence, the next updated position for a search agent can
be any point between the current position of the agent
and the position of the current best candidate when

|4 <1 (Mirjalili & Lewis, 2016).

In the Exploitation stage, the updating of the spiral
movement (helix-shaped movement) was performed by
the spiral equation in Eq. 24 based on the location of
whales and prey (Mirjalili & Lewis, 2016).

X(t) = D' - e - cos(2nl) + X*(¢) (24)

Where, D' = |X*(¢) —)?(t)| is the distance between the
prey and the whale at the i iteration, b is a constant
that defines the shape of the logarithmic spiral, and! is
a random number within the interval [-1,1]. Humpback
whales employ a strategy where they swim around prey
within a shrinking circle while also following a spiral-
shaped path. Consequently, there is a 0.5 probability of
selecting either the shrinking encircling mechanism or
the spiral model to update the whale's position during
optimization  (Mirjalili &  Lewis, 2016). The
comprehensive equation for updating the position,
inspired by the hunting behavior of humpback whales
during the exploitation stage, is provided in Eq. 25,
where p is the probability of between [0,1] (Mirjalili &
Lewis, 2016).

= RO AT s <os

S (25)
D! -eP-cos(2ml) + X*(t) if p<0.5

The Exploration stage simulates humpback whales
searching for prey randomly, based on each other's

position. In the exploration stage, A is used with random
values greater than 1 or less than -1 to force the search
agent to move far away from a reference whale. During
the Exploitation stage, the positions of the search agents
are updated according to the best candidate acquired.
Conversely, in the Exploration stage, the positions of the
search agents are updated based on a randomly selected
search agent. This enables the algorithm to conduct a

global search, as described in Eq. 26, where, )?r is a
random position vector selected from the current
population (Mirjalili & Lewis, 2016).

I (26)

3. Results
The study focused on the optimal placement and
sizing of BESS in a power distribution network to
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minimize power losses using the CCOA. This study was
conducted on a 148-bus distribution network with a
nominal voltage of 11 kV, modeled using ETAP®. Two
primary scenarios were investigated, i.e., S; and S,y .
For each scenario, the performance of single and dual
BESS configurations was evaluated using Sim_Op and
Seq_Op steps.

Table 4: The comparison of the performance of different
Optimization algorithms in Power Loss Reduction
Algorithm  Model Power Loss (kW)
Sim_Op  Seq_Op

CCOA Sep1 139.6 143.8
Ses2 121.4 124.9

Spve1 118.2 122.4

Spyp2 97.8 101.3

COA Sep1 144.5 149.2
Scg2 128.1 131.7

Spvs1 124.6 128.3

Spys2 103.5 107.8

WOA Ses1 147.3 152.5
Sep2 132.2 135.9

Spve1 126.8 130.4

Spv2 106.1 110.9

PSO Sep1 150.7 155.6
Seg2 135.5 139.2

Sove1 130.4 134.7

Spyp2 109.3 114.2

3.1.  Optimization model evaluation

The CCOA demonstrated superior performance
compared to conventional COA, WOA, and PSO as
presented in Table 4. The CCOA had the lowest Power
Loss in all the observed scenarios. The integration of
chaotic  dynamics  significantly improved the
convergence rate and diversity in solution space. The
simulations achieved stable convergence in under 45
iterations (Fig. 3 (a)), with average computation time
ranging between 1.7 to 2.3 minutes per epoch. The
fitness function in this study was based on the
minimization of total active power loss and penalization
of constraint violations. Additionally, from Fig. 3 (b), the
CCOA under Sim_Op yielded the most optimal and
feasible solutions across all scenarios.

3.1.1. Analysis of Simultaneous and Sequential
Optimization Steps
The Sim_Op consistently achieved better results
(lowest Power loss) by considering location and size
interdependencies as given in Table 4. However, it
demanded more computational resources. However, The
Seq_Op was faster, making it suitable for real-time
applications where computational time is critical.
Therefore, for large-scale networks, Seq_Op may be
preferred due to its lower computational burden, while
Sim_Op is ideal for offline planning where accuracy is
paramount.

17



P. Lagat et al.

199
198
197

196

Power Loss (kW)

Iterations

(a)

Journal of Advances in Science, Engineering and Technology Volume 2 (2025) 1:002

- - -
3 o v}
=} a =}

Fitness (Power Loss in kW)

-
@
=]

200
[ 10 20 30 0 50 60 70
Rerations

(b)

Fig. 3: The comparison of the performance of CCOA, COA, WOA, and PSO (a) Convergence graph comparing over 50 iterations (b) Convergence
curve comparing fitness (power loss in kW) across optimization iterations using Sim_Op steps

3.2.  Power Loss Reduction Evaluation
3.2.1. Analysis of Grid-Connected Distribution
System with Single BESS Unit (S;g1)

In Sim_Op, the location and size of a single BESS
were simultaneously optimized. The algorithm identified
Bus 87 as the optimal location for BESS placement with
a capacity of 1400 kWh and rated power of 420 kW. The
total active power loss was reduced from 201.3 kW in S,
to 139.6 kW, representing a 30.64% reduction in losses
as shown in Fig. 4 and Fig. 5. Additionally, the voltage
profile across the network improved, with the minimum
bus voltage increasing from 0.927 pu to 0.954 pu,
highlighting enhanced voltage regulation.

When the location was optimized first (Seq_Op) with
a fixed size of 1000 kWh, the optimal bus was again
identified as Bus 87, validating the selection of Bus 87.
Subsequent optimization of the size yielded an optimal
configuration of 1250 kWh at 410 kW. The resulting

power losses were 143.8 kW, slightly higher than in the

simultaneous case, but still a 28.6% reduction from S;
as shown in Fig. 4 and Fig. 5.

3.2.2. Analysis of Grid-connected System with
Two BESS Units (S¢p2)

The introduction of a second BESS unit allowed for
more distributed energy support. The optimal placement
was determined at Bus 63 and Bus 107, with sizes of 900
kWh (270 kW) and 1100 kWh (330 kW), respectively,
using the Sim_Op. The losses were significantly reduced
to 121.4 kW, reflecting a 39.68% improvement compared
to the base case. The S;5, configuration outperformed
the S;p;, setup by 9.05% as shown in Fig. 5. Additionally,
the minimum voltage across the network was improved
to 0.971 pu from 0.937 pu, and voltage deviation across
all buses was more uniform, demonstrating the value of
multi-node energy injection.
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g 100+ 100 9
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Fig. 4: The total Power Loss in the system for different scenarios using CCOA for both Sim_Op and Seq_Op
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Fig. 5: Loss Reduction Percentage per Scenario using the CCOA

The Seq_Op was applied with initial fixed BESS sizes
of 800 kWh each, location optimization suggested Bus 61
and Bus 106. Size tuning in the next step yielded 880 kWh
(260 kW) and 1150 kWh (345 kW), respectively. The
resulting loss was 124.9 kW, slightly higher than the
simultaneous method but still showing a 37.9%
reduction. The summary of the results is given in Table
5.

3.2.3. Analysis of Grid-Connected Distribution
System with PV and Single BESS Unit (Spyg1)
This scenario incorporated two PV generation units
placed at Bus 34 and Bus 77; each rated at 350 kW (the
most stable Buses with the highest pu). The total system
Power Loss of the Sp, Configuration alone before the
BESS integration was established to be 164.5 kW, lower
than the 201.3 kW in S;; as shown in Fig. 6.

The integrated PV systems helped flatten the load
profile, which in turn influenced BESS optimization.
Applying the Sim_Op, the optimization algorithm located
the BESS at Bus 95 with an optimal capacity of 1000 kWh
and rated output of 300 kW. Losses were reduced to
118.2 kW, a 41.3% reduction from S; setup Fig. 5.
Compared to the Sp, configuration (164.5 kW losses),
this configuration improved efficiency by 28.1%. The
voltage profile was significantly improved, especially in
sections near Bus 77 (0.921 to 0.967 for Bus 77), due to
the localized generation and energy storage support.
The application of Seq_Op fixed the BESS size at 950
kWh, and the optimal location was determined to be Bus
93. After size optimization, the best configuration was
1020 kWh (310 kW). This led to losses of 122.4 kW,
translating to a 39.2% improvement, slightly less than
the simultaneous strategy.
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Fig. 6: The comparison in Total Power Loss in the distribution
system between the base case (S;)and PV intergrated system (Spy)

3.2.4. Analysis of Grid-connected System with PV
and Two BESS Units (Spyg2)
This scenario had the highest complexity with
combined PV and dual BESS systems. It best reflects
future smart grid implementations where diverse
energy sources interact. The Sim_Op determined the
optimal locations as Bus 91 and Bus 123, with BESS
sizes of 800 kWh (240 kW) and 950 kWh (285 kW),
respectively. Losses dropped to an impressive 97.8 kW,
the lowest across all scenarios Fig. 4 and Fig. 5. This
marked a 51.4% improvement relative to the base case
and a 40.5% improvement over the S, configuration.
Additionally, power factor improvements were
observed due to reactive power support from both PV
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inverters and BESS units, stabilizing voltage swings and
reducing reactive power demand. The application of
Seq_Op fixed the BESS sizes of 850 kWh, optimal
locations were found at Bus 89 and Bus 121. After
sizing, the values were adjusted to 820 kWh (250 kW)
and 980 kWh (290 kW). The losses were slightly higher
at 101.3 kW, yielding a 49.7% reduction.

Table 5: Power Loss Reduction in all Scenarios
Scenario Optimization  Loss Loss Reduction

Step (kW) (%)
Sipt Sim_Op 139.6 30.6%
Seq_Op 143.8 28.6%
Sim Sim_Op 121.4 39.7%
Seq_Op 124.9 37.9%
Son1 Sim_Op 118.2 41.3%
Seq_Op 122.4 39.2%
Sum Sim_Op 97.8 51.4%
Seq_Op 101.3 49.7%

Loss in S; is 201.3 kW and in Spy, is 164.5 kW

3.2.5. Evaluation of the effect of BESS
Configurations
The comparative analysis between single and dual
BESS configurations revealed significant differences in
system performance. Dual-BESS systems consistently
outperformed their single-unit counterparts in both S
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and Spy scenarios. Specifically, the dual-BESS
configuration reduced power losses by an additional 9.1%
in the S; setup and 10.1% in the Sp, Configuration Fig. 5.
This superior performance is attributed to the
distributed nature of energy injection, which allows
better voltage support across the network and minimizes
localized overloading. Moreover, dual-BESS setups
improved the voltage profile across all buses more
effectively, maintaining minimum voltage levels
consistently above 0.95 pu compared to the 0.94-0.95 pu
range observed in single-BESS cases, and 0.927 pu in the
S¢ as shown in Fig. 7. This uniform voltage regulation
helps mitigate voltage violations, enhancing overall grid
stability. The benefit of improved voltage profiles is
especially evident in PV-integrated systems, where the
variability in generation is better compensated by the
flexibility of multiple BESS units. Despite higher
implementation complexity and cost, dual-BESS systems
present a compelling case for enhanced operational
reliability, scalability, and energy loss reduction.
Therefore, in high-demand or renewable-rich
distribution networks, deploying dual or multi-point BESS
configurations proves to be an effective strategy for
maximizing efficiency and resilience.

Voltage Profile (p.u.) Across Buses for BESS Configurations
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Fig. 7: The voltage profiles (pu) across the 148-bus distribution network for both single and dual BESS configurations

4. Discussions

The results demonstrate the efficiency of CCOA in
optimizing BESS  configurations, outperforming
traditional optimization techniques such as the COA,
WOA, and PSO. The CCOA consistently achieved the
lowest power losses across all scenarios, validating its
superiority over conventional optimization methods,
e.g., in the S;z;, the CCOA reduced power losses by
30.64% (from 201.3 kW to 139.6 kW) under Sim_Op. This
outperformed COA (144.5 kW), WOA (147.3 kW), and PSO
(150.7 kW) under the same conditions. The chaotic
dynamics integrated into CCOA enhanced its ability to
escape local minima, ensuring a more thorough
exploration of the solution space (Acikkapi & Ozkaynak,
2020; Pierezan et al., 2021). This aligns with previous
studies that highlight the advantages of chaotic maps in
improving metaheuristic algorithms’ convergence and
diversity (Heidari et al., 2020).

The dual-BESS configuration, i.e., S;p, further
reduced losses to 121.4 kW (39.68% reduction),

demonstrating the benefits of distributed energy
storage. This result concurs with the report by Wong et
al. (2019), which emphasized that multi-point BESS
placement mitigates localized overloading and improves
voltage regulation. The CCOA's ability to handle such
complex, high-dimensional problems underscore its
robustness in real-world applications.

The integration of PV systems with BESS (Spy5, and
Spvp2) yielded even greater reductions in power losses.
The Spyp; scenario achieved a 41.3% loss reduction
(118.2 kW), while Spy 5, achieved 51.4% (97.8 kW). These
results corroborate the findings of Adefarati & Bansal
(2016), who noted that renewable energy units, when
optimally sized and located, significantly reduce feeder
overload and power losses. The PV systems flattened the
load profile, reducing peak demand and enabling BESS to
operate more efficiently (Kumar et al., 2019). Moreover,
the dual-BESS configuration in PV-integrated systems
(Spyp2) outperformed the single-BESS setup (Spy51) by an
additional 10.1%. This highlights the synergistic effect of
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combining distributed generation with distributed
storage, as noted by Dowling et al. (2020) that the
flexibility of multiple BESS units compensates for the
intermittency of PV generation, ensuring stable grid
operation (Wong, Ramachandaramurthy, Taylor, et al.,
2019).

The study also established significant improvements
in voltage profiles across the 148-bus network. In the S; ,
the minimum voltage was 0.927 pu, which improved to
0.954 pu with a single BESS (S;g;) and 0.971 pu with dual
BESS (Sgp2). The PV-integrated scenarios (Spyg, and Spy g,
) further enhanced voltage stability, with minimum
voltages of 0.967 pu and 0.975 pu, respectively. These
improvements are critical for maintaining grid reliability
and compliance with voltage standards (Kumar et al.,
2019). The dual-BESS configuration provided more
uniform voltage regulation, mitigating voltage violations
in remote or heavily loaded buses. This aligns with the
report by Rajamand (2020), which emphasized that
distributed BESS placement enhances voltage support
across the network. The results also concur with those
of Shaheen et al. (2021), who demonstrated that optimal
BESS sizing and placement improve voltage profiles while
reducing losses.

The proposed study compared two optimization
approaches, i.e., Sim_Op and Seq_Op. Sim_Op, which
optimizes BESS location and size concurrently,
consistently achieved better results but required higher
computational resources. For example, in S;z, Sim_Op
reduced losses to 139.6 kW, while Seq_Op achieved
143.8 kW. This difference arises because Sim_Op
accounts for the interdependencies between location
and size, leading to more globally optimal solutions
(Pierezan & Coelho, 2018). Seqg_Op, on the other hand,
is computationally less intensive and may be more
suitable for real-time applications. However, its
performance is limited by the initial assumptions (e.g.,
fixed BESS size in the first step). This trade-off between
accuracy and computational efficiency must be carefully
considered in practical implementations, especially for
large-scale networks (Sadovskaia et al., 2019).

Generally, the findings of this study have several
practical implications for power distribution systems.
First, the superior performance of CCOA suggests its
potential for widespread adoption in grid planning and
operation. Its ability to handle complex, non-linear
problems makes it suitable for other optimization tasks,
such as capacitor placement or feeder reconfiguration
(Ghofrani et al., 2013). Second, the demonstrated
benefits of dual-BESS configurations highlight the
importance of distributed energy storage in modern
grids. As renewable energy penetration increases,
utilities should consider multi-point BESS deployments to
enhance system resilience and efficiency (De Sisternes
et al., 2016). Third, the integration of PV with BESS
offers a viable pathway for decarbonizing power systems
while improving operational efficiency. Policymakers
and grid operators should incentivize such hybrid
systems to accelerate the energy transition (Datta et al.,
2021).
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5. Conclusion

This study investigated the optimal placement and
sizing of BESS in a 148-bus power distribution network to
minimize power losses using the CCOA. The research
demonstrated that CCOA outperformed COA, WOA, and
PSO optimization techniques by achieving the lowest
power losses across all tested scenarios. The integration
of chaotic dynamics enhanced the algorithm’s ability to
balance exploration and exploitation, preventing
premature convergence and improving solution
accuracy. The results established that dual-BESS
configurations significantly reduced power losses
compared to single-BESS setups, with reductions of up to
51.4% in PV-integrated systems. The optimal placement
of BESS units at strategic buses (e.g., Bus 87 for single-
BESS and Buses 63 & 107 for dual-BESS) improved voltage
stability, maintaining minimum voltages above 0.95 pu
across the network. Furthermore, the combination of
BESS with solar PV generation further enhanced loss
reduction, highlighting the synergistic benefits of hybrid
renewable-storage systems in modern grids. The study
also compared two optimization approaches, Sim_Op
and Seq_Op, revealing that Sim_Op provided superior
results by considering location and size
interdependencies, while Seq_Op offered computational
efficiency for real-time applications. These insights are
crucial for utilities and grid operators in planning cost-
effective and resilient power distribution systems. The
proposed CCOA-based optimization framework provides
a robust methodology for integrating BESS into
distribution networks, particularly in renewable-rich
environments. Future research should explore the
following: Firstly, the economic feasibility of large-scale
BESS deployment, including cost-benefit analysis.
Secondly, the dynamic load and generation scenarios are
used to assess real-time performance under varying
conditions. Lastly, the integration of other renewable
sources (e.g., wind) with BESS for a more comprehensive
energy management strategy. This study contributes to
the development of smarter, more efficient power grids,
supporting global energy transition goals by advancing
optimization techniques and hybrid energy solutions.
The findings highlight the importance of intelligent BESS
placement and sizing in achieving sustainable and
resilient power distribution systems.
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