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ABSTRACT 
 

  

ARTICLE INFO 

The growing global electricity demand and increasing integration of renewable energy 
have intensified the need for efficient and resilient power distribution systems. Power 
losses in distribution networks remain a persistent challenge, increasing operational costs 
and reducing efficiency. This study investigates the optimal placement and sizing of 
battery energy storage systems to minimize losses in a 148-bus distribution network. A 
Chaotic Coyote Optimization Algorithm is proposed, which enhances the conventional 
Coyote Optimization Algorithm by incorporating chaotic maps to improve exploration, 
prevent local optima trapping, and accelerate convergence. Two scenarios were 
evaluated: (i) a grid-connected system and (ii) a grid-connected system with solar 
photovoltaic integration. For each scenario, single-unit and dual-unit battery energy 
storage configurations were tested using simultaneous and sequential optimization 
strategies. The Chaotic Coyote Optimization Algorithm consistently outperformed the 
Coyote Optimization Algorithm, Whale Optimization Algorithm, and Particle Swarm 
Optimization, achieving faster convergence and greater solution accuracy. Results 
showed that dual-unit battery energy storage configurations significantly reduced losses 
compared to single-unit setups, with the best case (dual-unit plus solar photovoltaic 
integration) achieving a 51.4 percent reduction in active power losses and an 
improvement in minimum bus voltage from 0.927 per unit to 0.975 per unit. The study 
demonstrates that combining battery energy storage with renewable integration not only 
reduces distribution losses but also enhances voltage stability. The proposed Chaotic 
Coyote Optimization Algorithm framework provides a robust methodology for energy 
storage optimization, offering valuable insights for utilities in planning sustainable, cost-
effective, and resilient smart grids. 
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1. Introduction   

The global electricity demand has been on an 
inclining trend with a growth rate of 2.4% annually and a 
projected rise to over 50% by 2050 (IEA, 2023; Mir et al., 
2020). Despite increased global generation capacity due 
to the upscale of renewable energy to more than 440 GW 
(IEA, 2023), energy transfer from the generation side to 
the demand side remains a challenge in power networks 
due to power losses (Sadovskaia et al., 2019). Studies 
have reported that about 10% of power losses occur in 
transmission and distribution networks, with over 40% of 
the total power losses occurring in the distribution 
networks accounting for a total loss of 4% to 37% of the 
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total generated energy (Al-Mahroqi et al., 2012; Tushar 
et al., 2020; Wu et al., 2022; Yang et al., 2020). 
Therefore, power loss reduction is imperative in energy 
utilization and economic development.  

Power loss consists of two parts, i.e., technical 
electrical power losses (Sadovskaia et al., 2019) and 
commercial (non-technical) power losses (Carr & 
Thomson, 2022).  The former is composed of variable loss 
and fixed loss in power systems, while the latter is 
caused by transgressions in energy management, theft, 
and statistical errors (Wu et al., 2022).  This study will 
consider the technical power losses. Variable technical 

mailto:cokinda@mmust.ac.ke
https://www.mmust.ac.ke/staffprofiles/index.php/dr-benjamin-victor-odari
https://www.enlivenproject.eu/survival-kit/tools/creative%20commons/creativecommons.html
https://orcid.org/0000-0001-7887-4216
https://www.mmust.ac.ke/
https://journals.mmust.ac.ke/index.php/aset/index
https://orcid.org/0000-0001-7887-4216


P. Lagat et al.                                                                       Journal of Advances in Science, Engineering and Technology Volume 2 (2025) 1:002 

 

10 
 

power loss is proportional to the square of the load 

current and accounts for 
3

4
 to 

2

3
 of the total technical 

losses in a distribution network (Abd el-Ghany et al., 
2021), while the fixed technical power loss accounts for 
1/4 to 1/3 of the total technical losses in a distribution 
network (Electrical Equipment, 2023; Gasperic, 2011). 
The factor of power loss introduces complexities in 
power system design in matching generation and 
demand, and the transmission of power losses from 
generators to loads via networks and transformers, thus 
resulting in higher electricity costs. Additionally, the 
annual costs for power losses consist of generation, 
transmission, and distribution (Abeysinghe et al., 2020; 
Sadovskaia et al., 2019). Thus, power loss has a negative 
impact on the whole power system network, and 
consequently on the whole community. Distribution 
losses not only reduce the overall efficiency of the 
system but also result in increased operational costs for 
utility providers (Wang et al., 2018). Therefore, 
mitigating distribution losses is essential to improving 
the overall performance of power distribution systems.  

Various conventional techniques have been 
employed to reduce distribution losses, i.e., network 
reconfiguration, voltage regulation, and capacitor 
placement (Agüero, 2012). Additionally, several studies 
have reported on the solutions to power loss reduction 
in power distribution networks such as feeder 
reconfiguration (Abdelaziz et al., 2016; Hesaroor & Das, 
2019; Li et al., 2019; Shaheen et al., 2021; Wu et al., 
2010; Xie et al., 2021), VAR compensation (Rajičić & 
Todorovski, 2020; Shaheen et al., 2021; D. Zhang et al., 
2008), distributed generation (DG)  (Hesaroor & Das, 
2019; Ilo et al., 2003; Ufa et al., 2022), and smart 
metering (Ilo et al., 2003; Mbungu et al., 2020).  

However, studies have reported on the shortcomings 
of these techniques. Feeder reconfiguration suffers from 
high complexity and cost (Al-Mahroqi et al., 2012; 
Civanlar et al., 1988; Kashem et al., 2000), disruptions 
of operations (Anteneh et al., 2021; Jose & Kowli, 2019; 
Tian et al., 2016), limited applicability (Al-Mahroqi et 
al., 2012; Kavousi-Fard & Niknam, 2013; Sultana et al., 
2016), unsustained effectiveness due to the dynamic 
nature of loads  (Azizivahed et al., 2018, 2019; Lotfi & 
Shojaei, 2023), and dependency on advanced control 
systems (Al-Mahroqi et al., 2012; Zhang et al., 2021). 
Despite VAR compensation and capacitor placement 
being valuable techniques in loss reduction and voltage 
control in distribution networks, their applicability is 
limited by several setbacks, i.e., Capital Intensive 
(Machowski et al., 2020), complexities in Maintenance 
(Bansal, 2005; Kothari, 2012), inflexibility to adapt to 
dynamic load variation (Chakrabarti & Halder, 2022), 
overcompensation problems (Das, 2002; Liu et al., 2014), 
and introduction of switching transients into the system 
(Bisquert, 2023; Jami et al., 2020).  Injecting a small 
amount of DG reduces the power losses to a minimum 
level (threshold) after which an increase in DG increases 
the losses in the network (Al-Mahroqi et al., 2012). 
Therefore, optimal placement and sizing of DG in the 
distribution network is still a challenge in optimal loss 

reduction based on DG technology. Additionally, with the 
current high penetration of renewable energies 
characterized by high intermittency, the problem of loss 
reduction in distribution networks has become complex 
due to frequency fluctuations and voltage quality 
problems, thus increasing energy losses in the 
distribution networks (Wu et al., 2022). A report by 
Adefarati & Bansal (2016) stated that proper sizing and 
location of renewable units can reduce feeder overload 
and power losses. Similarly, Marneni et al. (2015) 
reported that the optimal placement and sizing of DG in 
the distribution network improves voltage profile, 
reduces system power losses, improves power quality, 
relieves power grid congestion, and reduces the 
associated costs.  

Battery Energy Storage Systems (BESS) have emerged 
as a promising solution for mitigating distribution losses 
and enhancing grid reliability (Prakash et al., 2022). BESS 
offers several advantages, including fast response times, 
flexibility in operation, and compatibility with 
renewable energy sources (Datta et al., 2021). 
Therefore, by strategically deploying BESS within 
distribution networks, utilities can optimize energy flow, 
reduce peak demand, and improve voltage stability 
(Kumar et al., 2019). Additionally, BESS can provide 
ancillary services such as frequency regulation, voltage 
support, and backup power during outages (Rancilio et 
al., 2020). Furthermore, BESS can mitigate the effects 
caused by the intermittency of renewable energy 
(Dowling et al., 2020; Wong, Ramachandaramurthy, 
Taylor, et al., 2019). Moreover, they can improve and 
compensate for the stability and flexibility of the power 
system during generation loss, load fluctuations, and 
transmission loss (De Sisternes et al., 2016; Wong, 
Ramachandaramurthy, Taylor, et al., 2019). Therefore, 
power loss in a network can be efficiently reduced by the 
application of BESS to balance the power exchange 
(Wong, Ramachandaramurthy, Walker, et al., 2019). 
However, the efficiency of loss reduction is influenced 
by the size and location of the BESS (Rajamand, 2020; 
Wong, Ramachandaramurthy, Walker, et al., 2019).  

The determination of the optimal location and sizing 
of BESS is a complex non-deterministic polynomial-time 
problem (Wong, Ramachandaramurthy, Walker, et al., 
2019) whose solution is affected by power network 
requirements, total load demand, network topology, 
total generation capacity, and the applied BESS 
technology (Wong, Ramachandaramurthy, Taylor, et al., 
2019; Wong, Ramachandaramurthy, Walker, et al., 2019; 
Yuan et al., 2020). Several studies have applied different 
techniques to determine the optimal sizes and locations 
of BESS in power distribution networks for loss reduction. 
Giannitrapani et al. (2016) developed a clustering 
technique for the optimal placement and sizing of BESS 
in a radial electricity network. The study established 
that the optimal location of the BESS units was on a 
critical bus. Zhao et al. (2015) introduced a long-term 
Wind Power Time series technique to optimally locate 
and determine the capacity of BESS based on the 
charging and discharging cycles of the BESS. A cost-based 
approach was presented by Carpinelli et al. (2013) to 
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determine the optimal location and sizing of BESS in an 
unbalanced low-voltage microgrid. The minimal and 
maximal loss-sensitive factors (LSF) value was adopted 
by Sardi et al. (2015) for optimal location selection for 
BESS. Algorithms such as the Particle Swarm 
Optimization (PSO) algorithm (Chen et al., 2019; Jin et 
al., 2020; Rajamand, 2020; Shi & Luo, 2017; Zhu et al., 
2018), the genetic algorithm (GA) (Ghofrani et al., 2013; 
Khaki & Das, 2019), firefly algorithm (FA) (Ai et al., 2014; 
Wong et al., 2014), bee colony algorithm (Das et al., 
2018), bat algorithm (Bahmani-Firouzi & Azizipanah-
Abarghooee, 2014), Whale optimization algorithm (WAO)  
(Wong, Ramachandaramurthy, Walker, et al., 2019), 
Coyote Optimization Algorithm (COA) (Yuan et al., 2020) 
have been applied in loss management and to and 
enhance system performance. However, most of these 
algorithms suffer from a slow convergence rate due to 
getting trapped in the local minimum (Jordehi, 2015; 
Wong, Ramachandaramurthy, Walker, et al., 2019; Yuan 
et al., 2020). Therefore, there is a need to improve these 
optimization algorithms with the ability to balance 
between exploitation and exploration of the meta-
heuristics (Cao et al., 2019). The main objective of this 
research study is to determine the optimal placement 
and sizing of BESS to reduce the power losses in a 
distribution network based on the chaotic coyote 
optimization algorithm (CCOA) in a 148-bus distribution 
network with a nominal voltage of 11 kV. 

2. Materials and methods  

This study focuses on the optimal placement and 
sizing of a BESS in a power distribution network to 
minimize power losses based on CCOA.  For a 
comparative analysis, two scenarios were explored, i.e., 

firstly, a grid-connected distribution system (𝑆𝐺) and 
secondly, a grid-connected distribution system with a 
solar photovoltaic (PV) system (𝑆𝑃𝑉). For each scenario, 

a single BESS (𝑆𝐺𝐵1 and 𝑆𝑃𝑉𝐵1)  and two BESS (𝑆𝐺𝐵2 and 

𝑆𝑃𝑉𝐵2)  were implemented for further comparative 
analysis. Therefore, six simulations (models) were 
developed.  Fig. 1 presents the research design flow for 
this introduced study. 

 
Fig. 1: The research design flow 

2.1. Data collection and system modeling 

For this study, the Kisumu–Ahero distribution line 
served as the study area, and the following 
comprehensive data were collected from the line 
between the period of September 2024 and December 
2024.  

Transmission Line Impedance and Configuration: 
Detailed impedance data for each line section were 
obtained to model power flow accurately. This data was 
essential for calculating voltage drops and power losses 
across the network.  

Lamped Load Demand: Real and reactive power 
demands at each bus were recorded. Accurate load data 

ensures realistic simulation outcomes and optimizes 
BESS performance where demand variability is highest 
(Zhang et al., 2023). 

Transformer and Bus Details: All transformer ratings 
and bus voltage level specifications were collected to 
reflect real-world conditions (Džafić et al., 2014). 

The Electrical Transient Analyzer Program (ETAP®) 
System (Liu, 2019; Shertukde, 2019) was applied in this 
study to model the Kisumu–Ahero distribution line. The 
one-line diagram of the distribution system is given in 
Fig. 2, and the summary of the data used in the 
simulation is given in Table 1. 

Table 1: A summary of the data used in the simulation of the 
Kisumu–Ahero distribution line. 

Electrical Components Number 

Buses  148 
Lamped loads 69 
Transmission lines 205 
Grid 1 

2.2. Chaotic Coyote Optimization Algorithm 

2.2.1. Coyote Optimization 
The COA is a nature-inspired metaheuristic 

algorithm introduced by Pierezan & Coelho (2018), based 
on the social and survival behavior of coyotes (Canis 
latrans) whereby multiple agents, "coyotes," work 
collectively to find optimal solutions to a given problem. 
Thus, the algorithm mimics the adaptation of coyotes in 
changing environments, optimizing solutions by evolving 
over iterations through social learning and adaptation 
mechanisms (Pierezan & Coelho, 2018). The COA is a 
population-based technique that applies both swarm 
intelligence and evolutionary heuristics, thus, the 
algorithm simulates the coyote's experiences and social 
structure behavior (Yuan et al., 2020). 

Representation of Coyotes in the Algorithm 
In COA, each coyote represents a potential solution 

to the optimization problem (a potential solution in the 
solution space, characterized by a position vector in a 
multidimensional space). Each pack of coyotes is 
represented as a group of individuals with certain 
"positions," indicating values within the solution space. 
The position of each coyote changes iteratively, 
mimicking the search for resources and survival 
behaviors within a pack. Therefore, these positions are 
modified iteratively as the algorithm runs, mimicking the 
movement of coyotes in search of food. The initial 
coyote positions are typically assigned randomly within 
the feasible solution space, according to Eq. 1. 

                    𝑥𝑖
𝑗
= 𝑥𝑚𝑖𝑛

𝑗
+ 𝑟(𝑥𝑚𝑎𝑥

𝑗
− 𝑥𝑚𝑖𝑛

𝑗
)                                         (1) 

Where 𝑥𝑖
𝑗
 is the position of the 𝑖𝑡ℎ coyote in the 

𝑗𝑡ℎ  dimension, 𝑥𝑚𝑖𝑛
𝑗

 and 𝑥𝑚𝑎𝑥
𝑗

 defines the bounds for each 

dimension, and 𝑟 is a random value in the range 
[0, 1] (Pierezan & Coelho, 2018). The initial position of 
each coyote is spread across the feasible solution space, 
enhancing exploration in the early stages of the 
algorithm (Pierezan & Coelho, 2018). 
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Fig. 2: The modeled Kisumu–Ahero distribution line 
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Social Learning in the Pack 
Coyotes exhibit pack behavior, a critical aspect of 

COA. Within each iteration, social interaction among 
coyotes allows them to learn from one another, updating 
their knowledge and improving their solutions towards 
optimal solutions. This interaction is mathematically 
represented by calculating the social position of the 
pack, which acts as a guide for individual coyotes. The 

social position (𝑥𝑠𝑜𝑐𝑖𝑎𝑙) is calculated as the median of the 
positions of all coyotes in the pack, shown in Eq. 2 

                          𝑥𝑠𝑜𝑐𝑖𝑎𝑙 = 𝑚𝑒𝑑𝑖𝑎𝑛({𝑥𝑖}𝑖=1
𝑁 )                                       (2) 

Where 𝑁 is the number of coyotes in the pack. The 
algorithm better handles outliers and creates a more 
robust search process by focusing on the median rather 
than the mean (Pierezan & Coelho, 2018). 

Adaptation Mechanism and Mutation 
The adaptation mechanism and mutation process are 

central to enabling coyotes (representing solutions) to 
explore the solution space effectively. The adaptation 
mechanism allows each coyote to adjust its position 
based on social information, while mutation introduces 
randomness to prevent premature convergence. 

Adaptation Mechanism 
The adaptation mechanism in COA allows each 

coyote to learn from the pack’s social position, 𝑥𝑠𝑜𝑐𝑖𝑎𝑙. 
The updated position for each coyote incorporates this 

social influence along with its current position (𝑥𝑖), 
leading to gradual improvements toward an optimal 

solution. The new position for the 𝑖𝑡ℎcoyote is computed 
according to Eq. 3. 

                                    𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖 + 𝑟1(𝑥𝑠𝑜𝑐𝑖𝑎𝑙 − 𝑥𝑖)                          (3) 

Where 𝑥𝑖
𝑛𝑒𝑤is the updated position, 𝑥𝑖 is the current 

position, 𝑥𝑠𝑜𝑐𝑖𝑎𝑙 is the social position of the pack, and 

𝑟1 is a random value in the range [0, 1]  that adds 
variability to the learning rate  (Pierezan & Coelho, 
2018). Each coyote is pulled towards the pack’s social 

position, but allows some degree of variation due to 𝑟1, 

which introduces adaptability without rigidly enforcing 
convergence. 

Mutation Process 
Each coyote undergoes a mutation process, ensuring 

diversity in the search and avoiding premature 
convergence. This prevents the algorithm from 
stagnating and encourages exploration. This is achieved 
by randomly selecting another coyote from the pack and 
generating a new candidate position, i.e., each coyote 

randomly selects another coyote’s position 𝑥𝑟𝑎𝑛𝑑𝑜𝑚, 
from the pack and modifies its position based on it. The 
new position is calculated according to Eq. 4. 

           𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖 + 𝑟1(𝑥𝑠𝑜𝑐𝑖𝑎𝑙 − 𝑥𝑖) + 𝑟2(𝑥𝑟𝑎𝑛𝑑𝑜𝑚 − 𝑥𝑖)              (4) 

Where 𝑥𝑟𝑎𝑛𝑑𝑜𝑚 is the position of a randomly selected 

coyote, and 𝑟2 are random values in the range [0, 1] 
adding stochasticity (Pierezan & Coelho, 2018). The 

adaptation term 𝑟1(𝑥𝑠𝑜𝑐𝑖𝑎𝑙 − 𝑥𝑖) aligns each coyote 
toward the social position, encouraging the coyotes to 

converge toward the median knowledge of the pack. This 
helps balance exploration and exploitation, moving 
coyotes toward potentially optimal areas of the search 

space. The mutation term 𝑟2(𝑥𝑟𝑎𝑛𝑑𝑜𝑚 − 𝑥𝑖) introduces 
randomness, encouraging exploration by moving the 
coyote away from the current position in the direction 
of another random coyote’s position. The combination of 
adaptation and mutation helps COA maintain a balance 
between exploration (searching new areas) and 
exploitation (refining known areas). After generating the 

new position 𝑥𝑖
𝑛𝑒𝑤, the coyote’s fitness is evaluated to 

determine if it should keep this new position. This 
process is essential in selecting better solutions over 
iterations, leading to convergence towards the optimal 
solution. 

Selection and Survival of Coyotes 
The selection and survival of coyotes is a critical 

phase that ensures only the fittest solutions are retained 
for future generations. This process mimics natural 
selection, where coyotes (potential solutions) with 
better fitness survive, while others are eliminated, 
guiding the algorithm toward optimal solutions. 
Therefore, once new candidate solutions are generated, 
a fitness function is applied to evaluate each solution. 
Coyotes with better fitness survive to the next iteration, 
simulating natural selection. This selection process 
refines the population, pushing the coyotes toward 
optimal solutions. The algorithm terminates when a 
stopping criterion, such as a maximum number of 
iterations or a desired fitness level, is met. 

To evaluate the quality of each coyote (solution), a 

fitness function 𝑓(𝑥𝑖) is applied, the fitness function 
depends on the specific optimization problem; for 
instance, it could represent the objective function in 
minimization or maximization tasks. Each coyote’s 
fitness is calculated according to Eq. 5. 

                                𝑓(𝑥𝑖) = 𝑂𝑏𝑗 (𝑥𝑖)                                                    (5) 

During the Adaptation Mechanism and Mutation phase, 
each coyote in the pack generates a candidate position 

𝑥𝑖
𝑛𝑒𝑤. Once the candidate position is created, its fitness 

𝑓(𝑥𝑖
𝑛𝑒𝑤) is calculated and compared with the original 

position 𝑓(𝑥𝑖). The selection process keeps the position 
with the better fitness as given in Eq. 6. 

                           𝑥𝑖 = {
𝑥𝑖

𝑛𝑒𝑤

𝑥𝑖      
𝑖𝑓𝑓(𝑥𝑖

𝑛𝑒𝑤) < 𝑓(𝑥𝑖) 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                
                              (6) 

In each generation, a few random coyotes are replaced 
to maintain diversity in the population. This replacement 
mechanism mimics the introduction of new coyotes into 

the pack, enhancing exploration. For a given coyote 𝑥𝑘, 
it is randomly replaced with a new position within the 
feasible space according to Eq. 7. This ensures a portion 
of the population is periodically refreshed, preventing 
local optima entrapment. 

                             𝑥𝑘 = 𝑥𝑚𝑖𝑛 + 𝑟(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)                                (7) 

After applying selection and replacement, the pack is 
updated with the fittest coyotes to proceed to the next 
iteration. The survival process is governed by the 
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principle of retaining the best solutions while 
introducing new ones to maintain a balance between 
exploration and exploitation. This selection and survival 
approach in COA enables it to efficiently explore the 
solution space while converging toward optimal 
solutions, making it effective in solving complex 
optimization problems. 

2.2.2. Chaotic Coyote Optimization  
The Chaotic Coyote Optimization Algorithm (CCOA) 

is an evolutionary computation technique that combines 
traditional optimization mechanisms with chaotic 
mapping to enhance search efficiency and avoid local 
minima, making it highly effective in solving complex, 
multimodal optimization problems (Pierezan et al., 
2021; Zhang et al., 2023). 

The CCOA hybrid approach takes advantage of 
chaotic maps, which are deterministic yet appear 
random, offering improved randomness over standard 
pseudorandom number generation. Chaos theory, 
introduced by Lorenz (1963), indicates that even simple 
deterministic systems can exhibit unpredictable, chaotic 
behavior over time. Therefore, this property makes 
chaotic maps a valuable tool in optimization, allowing 
CCOA to explore the search space more effectively than 
traditional approaches (Naanaa, 2015). 

Principles of Chaotic Behavior 
Chaotic behavior can be defined as deterministic yet 

highly sensitive to initial conditions, leading to a 
butterfly effect where small changes in input can 
produce vastly different outcomes (Cattani et al., 2016; 
Lorenz, 1963). In optimization, chaotic maps (Eq. 8) help 
prevent the algorithm from becoming stuck in local 
minima by maintaining diversity within the population 
(Wang et al., 2023). 

                             𝑥𝑛+1 = 𝑓(𝑥𝑛) = 𝑟𝑥𝑛(1 − 𝑥𝑛)                                (8) 

Where 𝑓 is a nonlinear function, i.e., logistic map, 𝑟 is a 
control parameter, typically between 3.57 and 4.0, to 
ensure chaotic behavior. 

Coyotes’ Social Structure and Optimization 
Coyotes, highly social animals, live in packs with a 

hierarchy and specific roles (Gifford et al., 2017). This 
social behavior, when adapted to CCOA, means that each 
candidate solution, or coyote, in the optimization 
process is part of a virtual pack (Naveen & Prathap, 
2023). The algorithm is initialized by creating multiple 
packs, where each coyote represents a potential solution 
(Wu et al., 2022). During each iteration, coyotes within 
a pack communicate, updating their positions based on 
pack leaders and other members (Nguyen et al., 2021). 

The position update of each coyote 𝑥𝑖 is performed 
according to Eq. 9. 

  𝑥𝑖,𝑗(𝑡 + 1) = 𝑥𝑖,𝑗(𝑡) + 𝛼 (𝑙𝑗 − 𝑥𝑖,𝑗(𝑡)) + 𝛽 (𝑝𝑗 − 𝑥𝑖,𝑗(𝑡))       (9) 

Where 𝑥𝑖,𝑗(𝑡) is the position of the 𝑗𝑡ℎ  coyote in the 

𝑖𝑡ℎ dimension at iteration 𝑡, 𝑙𝑗 represents the pack 

leader’s position, and 𝑝𝑗 is a random position 

influenced by other coyotes within the pack. 

Parameters α and 𝛽 are random weights between 0 and 
1, ensuring exploration and avoiding local minima (Abd 
Elaziz et al., 2021). 

Algorithm 1: The Chaotic Coyote Optimization Algorithm 

 Input: Number of packs (𝑃),  
            Number of coyotes per pack (𝑁),  

            Chaotic map (𝛾𝑡+1) 
            Max iterations (𝑇) 
            Control parameter (𝑟) for chaotic map 
            Objective function (𝑓) 
Output: Position and fitness of the best coyote as the 
optimal solution 

1 Initialize each coyote’s position randomly in the search 
space. 

2 For each 𝑷 
3  Calculate the fitness (objective function value) of 

each coyote. 
4  Identify the coyote with the best fitness as the pack 

leader. 
5 end 
6 Set iteration 𝒕 =  𝟏 
7 While 𝒕 ≤  𝑻 do 
8  Find 𝑥𝑖,𝑗(𝑡 + 1) 

9  Find 𝛾𝑡+1 = 𝑟𝛾𝑡(1 − 𝛾𝑡) 
10  Set chaotic factors 𝛼 = 𝛾𝑡 and 𝛽 = 1 − 𝛾𝑡 
11  For each coyote 𝒊 in 𝑵 
12   Update 𝑥𝑖

𝑛𝑒𝑤 = 𝑥𝑖 + 𝑟1(𝑥𝑠𝑜𝑐𝑖𝑎𝑙 − 𝑥𝑖) +
𝑟2(𝑥𝑟𝑎𝑛𝑑𝑜𝑚 − 𝑥𝑖) 

13   Find 𝑓(𝑥𝑖) = 𝑂𝑏𝑗 (𝑥𝑖) 
14   Update 𝑥𝑖 
15  end 
16  Randomize coyote behavior 𝛾𝑡+1 = 𝑟𝛾𝑡(1 − 𝛾𝑡) 
17  

Update 𝑥𝑖,𝑗(𝑡 + 1) = 𝑥𝑖,𝑗(𝑡) + 𝛾𝑡 (𝛼 (𝑙𝑗 − 𝑥𝑖,𝑗(𝑡))) +

𝛽 (𝑝𝑗 − 𝑥𝑖,𝑗(𝑡)) 

18 end 
 

Chaotic Integration in CCOA 
To integrate chaotic behavior, the position update is 

modified by incorporating chaotic maps (Açikkapi & 
Özkaynak, 2020). The algorithm introduces controlled 
randomness in the update equation by using a chaotic 
sequence, which enhances exploration (Açikkapi & 
Özkaynak, 2020). Eq. 10 presents the incorporation of 
the logistic map for generating chaotic sequences. 

                                     𝛾𝑡+1 = 𝑟𝛾𝑡(1 − 𝛾𝑡)                                        (10) 

Where 𝛾𝑡 is the chaotic parameter at iteration 𝑡. This 
chaotic sequence can influence α and 𝛽 in the position 
update, ensuring diverse movements (Heidari et al., 
2020).  

                𝑥𝑖,𝑗(𝑡 + 1) = 𝑥𝑖,𝑗(𝑡) + 𝛾𝑡 (𝛼 (𝑙𝑗 − 𝑥𝑖,𝑗(𝑡)))

+ 𝛽 (𝑝𝑗 − 𝑥𝑖,𝑗(𝑡))                                      (11) 

The updated chaotic position is performed according to 
Eq. 11. Therefore, the algorithm explores the search 
space more effectively, leveraging chaotic behavior to 
avoid premature convergence. The CCOA is summarized 
below in Algorithm 1. 

2.2.3. Optimization Problem Formulation 
The optimal placement and sizing of BESS in a power 

distribution network is a complex optimization problem 
that aims to minimize power losses while satisfying the 
technical and operational constraints. This study 
formulates the problem mathematically, defining the 
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objective function, decision variables, and constraints, 
and finally, integrates the CCOA to solve the problem 
efficiently. 

The primary objective of this study was to minimize 
the total active power losses in the distribution network. 

The power loss (𝑃𝑙𝑜𝑠𝑠) in a distribution system can be 
calculated using the bus conductance and voltage values 
according to Eq. 12 (Shaheen et al., 2021; Wu et al., 
2022) 

         𝑃𝑙𝑜𝑠𝑠 = ∑∑𝐺𝑖𝑗(𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗𝑐𝑜𝑠(𝜃𝑖 − 𝜃𝑗)

𝑁𝑏

𝑗=1

𝑁𝑏

𝑖=1

             (11) 

Where, 𝑁𝑏 is the total number of buses in the system, 𝐺𝑖𝑗 

is the conductance between the 𝑖𝑡ℎ and 𝑗𝑡ℎ bus, 𝑉𝑖 , 𝑉𝑗 are 

the voltage magnitudes at the 𝑖𝑡ℎ and 𝑗𝑡ℎ bus, 

respectively, and 𝜃𝑖 , 𝜃𝑗 are voltage angles at the 𝑖𝑡ℎ and 

𝑗𝑡ℎ bus, respectively. Therefore, the objective function 

𝑓 is the minimization of the 𝑃𝑙𝑜𝑠𝑠 as given in Eq. 13. 

                                     𝑓 = 𝑚𝑖𝑛(𝑃𝑙𝑜𝑠𝑠)                                               (12) 

Additionally, the optimization problem may also 
consider other objectives such as improving voltage 
profiles, reducing operational costs, or enhancing system 
reliability. However, for this study, the focus remains on 
minimizing power losses, as it directly impacts the 
efficiency and economic performance of the distribution 
network (Sadovskaia et al., 2019; Wu et al., 2022). 

The decision variables for this study were the 

location of BESS (𝐿𝑘) and the size of BESS (𝑆𝑘). 𝐿𝑘 is a 
binary variable indicating whether a BESS is installed at 
a specific bus, while 𝑆𝑘 is the rated power (kW) and 
energy capacity (kWh) at each selected location. 

Therefore, for a given distribution system with 𝑘 BESS 
units, the decision variables can be represented in a 
vector form given in Eq. 13, where each 𝑥𝑘 corresponds 

to the 𝐿𝑘 and 𝑆𝑘of the 𝑘𝑡ℎ BESS unit. The optimization 
algorithm searches for the optimal combination of these 

variables to minimize 𝑓. 

                               𝛸 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘]                                          (13) 

The optimization problem was subject to several 
technical and operational constraints to ensure feasible 
and practical solutions. These constraints include: Power 
Balance Constraints (The total power injected into the 
network must equal the sum of the total power demand 
and losses, i.e., nodal power balance for real and 
reactive power (Džafić et al., 2014)), voltage constraints 
(The voltage magnitude at each bus must remain within 
permissible limits to ensure system stability and 
compliance with standards for this study it was set to 
1.00 pu (Kumar et al., 2019)), BESS capacity constraints 
(The size of each BESS unit must be within feasible limits 
based on available technology and economic 
considerations, i.e., the physical limits of BESS in terms 
of charging and discharging capacities and energy 
storage limits (Rajamand, 2020)), and BESS placement 
constraints (Each BESS unit can only be placed at a bus 

that is pre-qualified based on load demand, 
accessibility, and technical viability). 

The optimization was performed over a 148-bus 
network with a nominal voltage of 11 kV, modeled using 
ETAP®. The decision space was large due to the high 
number of buses and potential BESS sizes, thus 
necessitating a robust search algorithm. The use of CCOA 
provides enhanced exploration and exploitation through 
chaotic dynamics, as it avoids premature convergence by 
integrating randomness from logistic maps (Açikkapi & 
Özkaynak, 2020; Pierezan et al., 2021). For each 
candidate solution (set of BESS placements and sizes), 
the power flow analysis was conducted. The fitness value 

was computed based on the total 𝑃𝑙𝑜𝑠𝑠 resulting from the 
configuration. If multiple BESS were used, the fitness 
was aggregated over the contribution of each unit. The 
candidate solutions were ranked, and the best-
performing ones were retained and evolved through 
CCOA processes such as chaotic mutation, pack learning, 
and survival dynamics.  

To handle constraint violations and to discourage the 
algorithm from selecting infeasible solutions while 
allowing for soft constraint handling, penalty functions 
were incorporated into the objective function. The 

modified fitness function is given in Eq. 14, where, 𝜆1 

and 𝜆2 are the penalty coefficients for voltage and BESS 
size violations, respectively, and Η𝑣 and Η𝑏𝑒𝑠𝑠 are the 
penalties for voltage and BESS size violations, 
respectively. 

                         𝐹 = 𝑃𝑙𝑜𝑠𝑠 + 𝜆1𝛨𝑣 + 𝜆2𝛨𝑏𝑒𝑠𝑠                                    (14) 

As already mentioned, the study considered two 

scenarios, i.e., 𝑆1𝐵1 and 𝑆2𝐵1  and 𝑆1𝐵2 and 𝑆2𝐵2 as 
summarized in Table 2. Additionally, under these 
scenarios, two optimization techniques procedures were 
applied, i.e., Simultaneous Optimization (Sim_Op) step 
and Sequential Optimization (Seq_Op) step regarding the 
location and size of BESS. 

Table 2: A summary of all the established models and a description 
of their objective function 

Scenario PV Integrated `BESS 
Units 

Objective 

𝑆1 No 1 Minimize 𝑃𝑙𝑜𝑠𝑠
(1)

 

𝑆1 No 2 Minimize 𝑃𝑙𝑜𝑠𝑠
(1)

 

𝑆2 Yes (2 PV) 1 Minimize 𝑃𝑙𝑜𝑠𝑠
(2)

 

𝑆2 Yes (2 PV) 2 Minimize 𝑃𝑙𝑜𝑠𝑠
(2)

 

Where 𝑃𝑙𝑜𝑠𝑠
(1)

 power loss in 𝑆𝐺 and 𝑃𝑙𝑜𝑠𝑠
(2)

 power loss in 𝑆𝑃𝑉 

Simultaneous Optimization Steps 
In the Sim_Op step, both location and size are 

treated as decision variables in a single vectorized 
solution space, optimized concurrently using the CCOA. 

Therefore, the decision variable vector becomes [𝑥𝑘] =
 [𝐿𝑘, 𝑆𝑘], for a single BESS while [𝑥𝑘] =  [𝐿𝑘 , 𝑆𝑘 , 𝐿𝑘, 𝑆𝑘] for 
a two BESS and the objective function is given in Eq. 15 

for 𝑆𝐺  and Eq. 17 for 𝑆𝑃𝑉 as given in Table 3. 

Sequential Optimization Steps 
In this approach, the location of the BESS is 

optimized first, assuming a predefined size. Once the 
location(s) are fixed, sizing is optimized in a second 



P. Lagat et al.                                                                       Journal of Advances in Science, Engineering and Technology Volume 2 (2025) 1:002 

 

16 
 

phase, using a narrowed-down search space. With a fixed 

BESS size (𝑆𝑓𝑖𝑥𝑒𝑑) assumed, the decision variable contains 

only the location 𝐿𝑘. Thus, the objective function is 

given in Eq. 16 for 𝑆𝐺  and Eq. 19 for 𝑆𝑃𝑉. Once the 
optimal location(s) are identified, sizing becomes the 
next optimization step. The decision variable contains 

only the size 𝑆𝑘.Therefore, the objective function is 

given in Eq. 17 for 𝑆𝐺  and Eq. 20 for 𝑆𝑃𝑉. 

Table 3: The objective function for each optimization problem 

Scenario Objective function Description 

𝑆1 Sim_Op 𝑚𝑖𝑛 𝐹 = 𝑓(𝐿𝑘 , 𝑆𝑘)  ∀𝑘 ∈ {1 𝑜𝑟 2} (15) 

 Seq_Op 𝑚𝑖𝑛 𝐹1 =  𝑓(𝐿𝑘) 𝑆𝑓𝑖𝑥𝑒𝑑 is fixed (16) 

  𝑚𝑖𝑛 𝐹2 = 𝑓(𝑆𝑘|𝐿𝑘 = 𝐿𝑘
𝑜𝑝𝑡

) (17) 

𝑆2 Sim_Op 𝑚𝑖𝑛 𝐹 = 𝑓(𝐿𝑘 , 𝑆𝑘 , 𝑃𝑝𝑣1, 𝑃𝑝𝑣2)  (18) 

 Seq_Op 𝑚𝑖𝑛 𝐹1 = 𝑓(𝐿𝑘 , 𝑃𝑝𝑣1, 𝑃𝑝𝑣2) (19) 

  𝑚𝑖𝑛 𝐹2 = 𝑓(𝑆𝑘|𝐿𝑘 = 𝐿𝑘
𝑜𝑝𝑡

, 𝑃𝑝𝑣) (20) 

 
2.2.4. Optimization Evaluation 

This study aims to optimally place and size BESS in a 
power distribution system to minimize losses in the 
network. A grid-connected distribution system was 

applied as the base case (𝑆𝐺) in this study. Therefore, a 

comparative analysis was performed between 𝑆𝐺, 𝑆𝐺𝐵1, 
𝑆𝐺𝐵2, 𝑆𝑃𝑉 , 𝑆𝑃𝑉𝐵1, 𝑆𝑃𝑉𝐵2. The performance of the models 
was evaluated based on the established Power Loss 
values. The task being a minimization task, the best 
model had the lowest Power Loss. Additionally, a 
comparison with other optimization techniques, i.e., 
COA, WOA, and PSO, was also performed to evaluate the 
performance of the proposed CCOA technique.  

2.2.5. Particle Swarm Optimization (PSO) 
Algorithm 

PSO is one of the most widely used algorithms in this 
domain is the PSO algorithm. Inspired by the collective 
behavior of birds flocking or fish schooling, PSO models 
each candidate solution as a “particle” in the search 
space that adjusts its position based on its own 
experience and that of neighboring particles (Cuevas et 
al., 2020; Neshat, Adeli, Sepidnam, Sargolzaei, & Toosi, 
2012). PSO has been used effectively to minimize power 
losses and improve voltage stability by identifying 
optimal BESS sizes and locations (Chen et al., 2019; Jin 
et al., 2020; Rajamand, 2020). However, PSO has 
limitations, particularly its tendency to become trapped 
in local optima, especially in high-dimensional or 
multimodal objective functions, which undermines its 
reliability in complex optimization tasks (Jordehi, 2015). 

In PSO, each particle represents a potential solution 
in the search space (Shami et al., 2022). It operates by 
initializing a group (or "swarm") of particles that move 
through the problem’s solution space to find the optimal 
solution. Each particle represents a potential solution 
and is characterized by two vectors, i.e., the position 

vector 𝑥𝑖 (representing the current solution) and velocity 
vector 𝑣𝑖 (representing the direction and magnitude of 
the particle's movement in the solution space) as given 
in Eq. 21. 

         
𝑣𝑖

𝑡+1 = 𝜔𝑣𝑖
𝑡 + 𝑐1𝑟1(𝑝𝑖

𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡) + 𝑐2𝑟2(𝑔

𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡)

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1                                                               

        (21) 

Where 𝜔 is the inertia weight (linearly decreased over 
iterations), balancing global and local search. A larger 𝜔 

encourages exploration, while a smaller 𝜔 promotes 

exploitation. 𝑐1 and 𝑐2 are acceleration coefficients, 
guiding the particle toward personal and global best 

positions, respectively. 𝑟1 and 𝑟2 are random numbers in 
[0, 1] that introduce stochasticity into the movement, 
preventing deterministic traps. 

Each particle adjusts its trajectory based on two key 

pieces of information: Its own best-known position 𝑝𝑖
𝑏𝑒𝑠𝑡 

and the globally best-known position 𝑔𝑏𝑒𝑠𝑡 found by the 

swarm. 𝑐1𝑟1(𝑝𝑖
𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑡) is a Cognitive Component whose 

task is to encourage the particle to return to the best 

solution it has found so far. While 𝑐2𝑟2(𝑔
𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑡) is the 

Social Component that encourages movement toward 
the best solution found by the swarm. To ensure 
particles do not escape the feasible space, boundary 
conditions are enforced by clamping velocities by setting 

𝑣𝑖
𝑡+1 ∈ [−𝑣𝑚𝑎𝑥 , 𝑣𝑚𝑎𝑥] and restricting positions to 

problem constraints, i.e., voltage boundaries. 

2.2.6. Whale Optimization Algorithm (WOA) 
The WOA is popular for its simplicity and search 

strategy, which is based on the bubble-net feeding 
method of humpback whales (Abualigah et al., 2024; 
Amiriebrahimabadi & Mansouri, 2024; Majumdar, Mitra, 
Mirjalili, & Bhattacharya, 2024). Wong et al. (2019) used 
WOA to reduce losses through optimal BESS configuration 
and found it more effective than traditional PSO and GA 
methods. However, WOA can also get stuck in 
convergence under certain conditions, showing a need 
for better hybrid or adaptive variants (Majumdar et al., 
2024; Nadimi-Shahraki, Zamani, Asghari Varzaneh, & 
Mirjalili, 2023). 

The WOA algorithm operates in two phases. The first 
phase is the Exploitation stage, which includes the 
Shrinking Encircling Mechanism and Spiral Updating 
Position. The second phase is the Exploration stage, 
which focuses on the Search for Prey. 

In the Exploitation stage, the Humpback whales 
locate and encircle prey, a behavior reminiscent of the 
WOA algorithm. Operating on the assumption that the 
precise location of the optimal design within the search 
space is unknown, the algorithm regards the current best 
solution as representative of the target prey or as being 
close to the optimal solution. Upon ascertaining the best 
solution, the remaining search agents adjust their 
positions toward this optimum solution. This process is 
formally defined by Eq. 22. 

                                            
𝐷⃗⃗ = ⌈𝐶 ∙ 𝑋 ∗(𝑡) − 𝑋 (𝑡)⌉   

  𝑋 (𝑡 + 1) = 𝑋 (𝑡) − 𝐴 ∙ 𝐷⃗⃗   
                         (22)  

Where 𝑡 is the number of iterations, 𝑋 ∗ is the position 

vector of the current best solution, 𝑋  is the position 

vector, and 𝐴  and 𝐶  are coefficient vectors and are 
computed based on Eq. 23  (Mirjalili & Lewis, 2016) 

                            𝐴
 = 2𝑎 ∙ 𝑟 − 𝑎  

𝐶 = 2 ∙ 𝑟            
                                                        (23) 
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Where 𝑟    is a random vector within the range of zero to 
one and 𝑎  is linearly decreased from two to zero during 
iteration. The shrinking encircling mechanism is realized 

through the decrease of 𝑎 .  Therefore,  𝐴  is decreased 
throughout the iteration within the interval [−𝑎 𝑎].  
Hence, the next updated position for a search agent can 
be any point between the current position of the agent 
and the position of the current best candidate when 

|𝐴 | ≤ 1  (Mirjalili & Lewis, 2016). 

In the Exploitation stage, the updating of the spiral 
movement (helix-shaped movement) was performed by 
the spiral equation in Eq. 24 based on the location of 
whales and prey (Mirjalili & Lewis, 2016). 

                  𝑋 (𝑡) = 𝐷⃗⃗ 𝑖  ∙ 𝑒𝑏𝑙 ∙ 𝑐𝑜𝑠(2𝜋𝑙) + 𝑋 ∗(𝑡)                              (24) 

Where, 𝐷⃗⃗ 𝑖 = |𝑋 ∗(𝑡) − 𝑋 (𝑡)| is the distance between the 

prey and the whale at the ith iteration, 𝑏 is a constant 

that defines the shape of the logarithmic spiral,  and 𝑙 is 
a random number within the interval [−1,1]. Humpback 
whales employ a strategy where they swim around prey 
within a shrinking circle while also following a spiral-
shaped path. Consequently, there is a 0.5 probability of 
selecting either the shrinking encircling mechanism or 
the spiral model to update the whale's position during 
optimization (Mirjalili & Lewis, 2016). The 
comprehensive equation for updating the position, 
inspired by the hunting behavior of humpback whales 
during the exploitation stage, is provided in Eq. 25, 
where 𝑝 is the probability of between [0,1] (Mirjalili & 
Lewis, 2016). 

       𝑋 (𝑡 + 1) = {
𝑋 ∗(𝑡) − 𝐴 ∙ 𝐷⃗⃗                         𝑖𝑓 𝑝 < 0.5

𝐷⃗⃗ 𝑖  ∙ 𝑒𝑏𝑙 ∙ 𝑐𝑜𝑠(2𝜋𝑙) + 𝑋 ∗(𝑡) 𝑖𝑓 𝑝 ≤ 0.5
      (25) 

The Exploration stage simulates humpback whales 
searching for prey randomly, based on each other's 

position. In the exploration stage, 𝐴  is used with random 
values greater than 1 or less than −1 to force the search 
agent to move far away from a reference whale. During 
the Exploitation stage, the positions of the search agents 
are updated according to the best candidate acquired. 
Conversely, in the Exploration stage, the positions of the 
search agents are updated based on a randomly selected 
search agent. This enables the algorithm to conduct a 

global search, as described in Eq. 26, where, 𝑋 𝑟 is a 
random position vector selected from the current 
population (Mirjalili & Lewis, 2016). 

                               
𝐷⃗⃗ = |𝐶 ∙ 𝑋 𝑟(𝑡) − 𝑋 (𝑡)|

𝑋 (𝑡 + 1) = 𝑋 𝑟(𝑡) − 𝐴 ∙ 𝐷⃗⃗ 
                                    (26) 

3. Results 

The study focused on the optimal placement and 
sizing of BESS in a power distribution network to 

minimize power losses using the CCOA. This study was 
conducted on a 148-bus distribution network with a 
nominal voltage of 11 kV, modeled using ETAP®. Two 

primary scenarios were investigated, i.e., 𝑆𝐺 and 𝑆𝑃𝑉. 
For each scenario, the performance of single and dual 
BESS configurations was evaluated using Sim_Op and 
Seq_Op steps. 

Table 4: The comparison of the performance of different 
Optimization algorithms in Power Loss Reduction 

Algorithm Model Power Loss (kW) 

Sim_Op Seq_Op 

CCOA 𝑆𝐺𝐵1 139.6 143.8 
 𝑆𝐺𝐵2 121.4 124.9 
 𝑆𝑃𝑉𝐵1 118.2 122.4 
 𝑆𝑃𝑉𝐵2 97.8 101.3 

COA 𝑆𝐺𝐵1 144.5 149.2 
 𝑆𝐺𝐵2 128.1 131.7 
 𝑆𝑃𝑉𝐵1 124.6 128.3 
 𝑆𝑃𝑉𝐵2 103.5 107.8 

WOA 𝑆𝐺𝐵1 147.3 152.5 

 𝑆𝐺𝐵2 132.2 135.9 
 𝑆𝑃𝑉𝐵1 126.8 130.4 
 𝑆𝑃𝑉𝐵2 106.1 110.9 

PSO 𝑆𝐺𝐵1 150.7 155.6 
 𝑆𝐺𝐵2 135.5 139.2 

 𝑆𝑃𝑉𝐵1 130.4 134.7 
 𝑆𝑃𝑉𝐵2 109.3 114.2 

 

3.1. Optimization model evaluation  

The CCOA demonstrated superior performance 
compared to conventional COA, WOA, and PSO as 
presented in Table 4. The CCOA had the lowest Power 
Loss in all the observed scenarios. The integration of 
chaotic dynamics significantly improved the 
convergence rate and diversity in solution space. The 
simulations achieved stable convergence in under 45 
iterations (Fig. 3 (a)), with average computation time 
ranging between 1.7 to 2.3 minutes per epoch. The 
fitness function in this study was based on the 
minimization of total active power loss and penalization 
of constraint violations. Additionally, from Fig. 3 (b), the 
CCOA under Sim_Op yielded the most optimal and 
feasible solutions across all scenarios. 

3.1.1. Analysis of Simultaneous and Sequential 
Optimization Steps 

The Sim_Op consistently achieved better results 
(lowest Power loss) by considering location and size 
interdependencies as given in Table 4. However, it 
demanded more computational resources. However, The 
Seq_Op was faster, making it suitable for real-time 
applications where computational time is critical. 
Therefore, for large-scale networks, Seq_Op may be 
preferred due to its lower computational burden, while 
Sim_Op is ideal for offline planning where accuracy is 
paramount.
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Fig. 3: The comparison of the performance of CCOA, COA, WOA, and PSO (a) Convergence graph comparing over 50 iterations (b) Convergence 

curve comparing fitness (power loss in kW) across optimization iterations using Sim_Op steps 
 

3.2. Power Loss Reduction Evaluation 

3.2.1. Analysis of Grid-Connected Distribution 

System with Single BESS Unit (𝑺𝑮𝑩𝟏) 
In Sim_Op, the location and size of a single BESS 

were simultaneously optimized. The algorithm identified 
Bus 87 as the optimal location for BESS placement with 
a capacity of 1400 kWh and rated power of 420 kW. The 

total active power loss was reduced from 201.3 kW in 𝑆𝐺  
to 139.6 kW, representing a 30.64% reduction in losses 
as shown in Fig. 4 and Fig. 5. Additionally, the voltage 
profile across the network improved, with the minimum 
bus voltage increasing from 0.927 pu to 0.954 pu, 
highlighting enhanced voltage regulation. 

When the location was optimized first (Seq_Op) with 
a fixed size of 1000 kWh, the optimal bus was again 
identified as Bus 87, validating the selection of Bus 87. 
Subsequent optimization of the size yielded an optimal 
configuration of 1250 kWh at 410 kW. The resulting 

power losses were 143.8 kW, slightly higher than in the 

simultaneous case, but still a 28.6% reduction from 𝑆𝐺 

as shown in Fig. 4 and Fig. 5. 

3.2.2. Analysis of Grid-connected System with 
Two BESS Units (𝑺𝑮𝑩𝟐) 

The introduction of a second BESS unit allowed for 
more distributed energy support. The optimal placement 
was determined at Bus 63 and Bus 107, with sizes of 900 
kWh (270 kW) and 1100 kWh (330 kW), respectively, 
using the Sim_Op. The losses were significantly reduced 
to 121.4 kW, reflecting a 39.68% improvement compared 

to the base case. The 𝑆𝐺𝐵2 configuration outperformed 
the 𝑆𝐺𝐵1 setup by 9.05% as shown in Fig. 5. Additionally, 
the minimum voltage across the network was improved 
to 0.971 pu from 0.937 pu, and voltage deviation across 
all buses was more uniform, demonstrating the value of 
multi-node energy injection. 
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Fig. 4: The total Power Loss in the system for different scenarios using CCOA for both Sim_Op and Seq_Op 
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Fig. 5: Loss Reduction Percentage per Scenario using the CCOA 

 
The Seq_Op was applied with initial fixed BESS sizes 

of 800 kWh each, location optimization suggested Bus 61 
and Bus 106. Size tuning in the next step yielded 880 kWh 
(260 kW) and 1150 kWh (345 kW), respectively. The 
resulting loss was 124.9 kW, slightly higher than the 
simultaneous method but still showing a 37.9% 
reduction. The summary of the results is given in Table 
5. 

3.2.3. Analysis of Grid-Connected Distribution 

System with PV and Single BESS Unit (𝑺𝑷𝑽𝑩𝟏) 
This scenario incorporated two PV generation units 

placed at Bus 34 and Bus 77; each rated at 350 kW (the 
most stable Buses with the highest pu). The total system 

Power Loss of the 𝑆𝑃𝑉 Configuration alone before the 
BESS integration was established to be 164.5 kW, lower 

than the 201.3 kW in 𝑆𝐺  as shown in Fig. 6.  

The integrated PV systems helped flatten the load 
profile, which in turn influenced BESS optimization. 
Applying the Sim_Op, the optimization algorithm located 
the BESS at Bus 95 with an optimal capacity of 1000 kWh 
and rated output of 300 kW. Losses were reduced to 
118.2 kW, a 41.3% reduction from 𝑆𝐺 setup Fig. 5. 

Compared to the 𝑆𝑃𝑉 configuration (164.5 kW losses), 
this configuration improved efficiency by 28.1%. The 
voltage profile was significantly improved, especially in 
sections near Bus 77 (0.921 to 0.967 for Bus 77), due to 
the localized generation and energy storage support. 
The application of Seq_Op fixed the BESS size at 950 
kWh, and the optimal location was determined to be Bus 
93. After size optimization, the best configuration was 
1020 kWh (310 kW). This led to losses of 122.4 kW, 
translating to a 39.2% improvement, slightly less than 
the simultaneous strategy. 
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Fig. 6: The comparison in Total Power Loss in the distribution 

system between the base case (𝑆𝐺)and PV intergrated system (𝑆𝑃𝑉) 

3.2.4. Analysis of Grid-connected System with PV 

and Two BESS Units (𝑺𝑷𝑽𝑩𝟐) 
This scenario had the highest complexity with 
combined PV and dual BESS systems. It best reflects 
future smart grid implementations where diverse 
energy sources interact. The Sim_Op determined the 
optimal locations as Bus 91 and Bus 123, with BESS 
sizes of 800 kWh (240 kW) and 950 kWh (285 kW), 
respectively. Losses dropped to an impressive 97.8 kW, 
the lowest across all scenarios Fig. 4 and Fig. 5. This 
marked a 51.4% improvement relative to the base case 
and a 40.5% improvement over the 𝑆𝑃𝑉 configuration. 
Additionally, power factor improvements were 
observed due to reactive power support from both PV 
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inverters and BESS units, stabilizing voltage swings and 
reducing reactive power demand. The application of 
Seq_Op fixed the BESS sizes of 850 kWh, optimal 
locations were found at Bus 89 and Bus 121. After 
sizing, the values were adjusted to 820 kWh (250 kW) 
and 980 kWh (290 kW). The losses were slightly higher 
at 101.3 kW, yielding a 49.7% reduction.  

Table 5: Power Loss Reduction in all Scenarios 

Scenario Optimization 
Step 

Loss 
(kW) 

Loss Reduction 
(%) 

𝑆1𝐵1 Sim_Op 139.6 30.6% 

 Seq_Op 143.8 28.6% 

𝑆1𝐵2 Sim_Op 121.4 39.7% 
 Seq_Op 124.9 37.9% 

𝑆2𝐵1 Sim_Op 118.2 41.3% 
 Seq_Op 122.4 39.2% 

𝑆2𝐵2 Sim_Op 97.8 51.4% 
 Seq_Op 101.3 49.7% 

Loss in 𝑆𝐺  is 201.3 kW and in 𝑆𝑃𝑉 is 164.5 kW 

3.2.5. Evaluation of the effect of BESS 
Configurations 

The comparative analysis between single and dual 
BESS configurations revealed significant differences in 
system performance. Dual-BESS systems consistently 

outperformed their single-unit counterparts in both 𝑆𝐺 

and 𝑆𝑃𝑉 scenarios. Specifically, the dual-BESS 
configuration reduced power losses by an additional 9.1% 

in the 𝑆𝐺 setup and 10.1% in the 𝑆𝑃𝑉 Configuration Fig. 5. 
This superior performance is attributed to the 
distributed nature of energy injection, which allows 
better voltage support across the network and minimizes 
localized overloading. Moreover, dual-BESS setups 
improved the voltage profile across all buses more 
effectively, maintaining minimum voltage levels 
consistently above 0.95 pu compared to the 0.94–0.95 pu 
range observed in single-BESS cases, and 0.927 pu in the 

𝑆𝐺 as shown in Fig. 7. This uniform voltage regulation 
helps mitigate voltage violations, enhancing overall grid 
stability. The benefit of improved voltage profiles is 
especially evident in PV-integrated systems, where the 
variability in generation is better compensated by the 
flexibility of multiple BESS units. Despite higher 
implementation complexity and cost, dual-BESS systems 
present a compelling case for enhanced operational 
reliability, scalability, and energy loss reduction. 
Therefore, in high-demand or renewable-rich 
distribution networks, deploying dual or multi-point BESS 
configurations proves to be an effective strategy for 
maximizing efficiency and resilience.

 
Fig. 7: The voltage profiles (pu) across the 148-bus distribution network for both single and dual BESS configurations 

 

4. Discussions 

The results demonstrate the efficiency of CCOA in 
optimizing BESS configurations, outperforming 
traditional optimization techniques such as the COA, 
WOA, and PSO. The CCOA consistently achieved the 
lowest power losses across all scenarios, validating its 
superiority over conventional optimization methods, 
e.g., in the 𝑆𝐺𝐵1, the CCOA reduced power losses by 
30.64% (from 201.3 kW to 139.6 kW) under Sim_Op. This 
outperformed COA (144.5 kW), WOA (147.3 kW), and PSO 
(150.7 kW) under the same conditions. The chaotic 
dynamics integrated into CCOA enhanced its ability to 
escape local minima, ensuring a more thorough 
exploration of the solution space (Açikkapi & Özkaynak, 
2020; Pierezan et al., 2021). This aligns with previous 
studies that highlight the advantages of chaotic maps in 
improving metaheuristic algorithms' convergence and 
diversity (Heidari et al., 2020). 

The dual-BESS configuration, i.e., 𝑆𝐺𝐵2 further 
reduced losses to 121.4 kW (39.68% reduction), 

demonstrating the benefits of distributed energy 
storage. This result concurs with the report by  Wong et 
al. (2019), which emphasized that multi-point BESS 
placement mitigates localized overloading and improves 
voltage regulation. The CCOA's ability to handle such 
complex, high-dimensional problems underscore its 
robustness in real-world applications. 

The integration of PV systems with BESS (𝑆𝑃𝑉𝐵1 and 

𝑆𝑃𝑉𝐵2) yielded even greater reductions in power losses. 

The 𝑆𝑃𝑉𝐵1 scenario achieved a 41.3% loss reduction 
(118.2 kW), while 𝑆𝑃𝑉𝐵2 achieved 51.4% (97.8 kW). These 
results corroborate the findings of Adefarati & Bansal 
(2016), who noted that renewable energy units, when 
optimally sized and located, significantly reduce feeder 
overload and power losses. The PV systems flattened the 
load profile, reducing peak demand and enabling BESS to 
operate more efficiently (Kumar et al., 2019). Moreover, 
the dual-BESS configuration in PV-integrated systems 
(𝑆𝑃𝑉𝐵2) outperformed the single-BESS setup (𝑆𝑃𝑉𝐵1) by an 
additional 10.1%. This highlights the synergistic effect of 
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combining distributed generation with distributed 
storage, as noted by Dowling et al. (2020) that the 
flexibility of multiple BESS units compensates for the 
intermittency of PV generation, ensuring stable grid 
operation (Wong, Ramachandaramurthy, Taylor, et al., 
2019). 

The study also established significant improvements 

in voltage profiles across the 148-bus network. In the 𝑆𝐺  , 
the minimum voltage was 0.927 pu, which improved to 

0.954 pu with a single BESS (𝑆𝐺𝐵1) and 0.971 pu with dual 

BESS (𝑆𝐺𝐵2). The PV-integrated scenarios (𝑆𝑃𝑉𝐵1 and 𝑆𝑃𝑉𝐵2

) further enhanced voltage stability, with minimum 
voltages of 0.967 pu and 0.975 pu, respectively. These 
improvements are critical for maintaining grid reliability 
and compliance with voltage standards (Kumar et al., 
2019). The dual-BESS configuration provided more 
uniform voltage regulation, mitigating voltage violations 
in remote or heavily loaded buses. This aligns with the 
report by Rajamand (2020), which emphasized that 
distributed BESS placement enhances voltage support 
across the network. The results also concur with those 
of Shaheen et al. (2021), who demonstrated that optimal 
BESS sizing and placement improve voltage profiles while 
reducing losses. 

The proposed study compared two optimization 
approaches, i.e., Sim_Op and Seq_Op. Sim_Op, which 
optimizes BESS location and size concurrently, 
consistently achieved better results but required higher 

computational resources. For example, in 𝑆𝐺𝐵1 Sim_Op 
reduced losses to 139.6 kW, while Seq_Op achieved 
143.8 kW. This difference arises because Sim_Op 
accounts for the interdependencies between location 
and size, leading to more globally optimal solutions 
(Pierezan & Coelho, 2018). Seq_Op, on the other hand, 
is computationally less intensive and may be more 
suitable for real-time applications. However, its 
performance is limited by the initial assumptions (e.g., 
fixed BESS size in the first step). This trade-off between 
accuracy and computational efficiency must be carefully 
considered in practical implementations, especially for 
large-scale networks (Sadovskaia et al., 2019). 

Generally, the findings of this study have several 
practical implications for power distribution systems. 
First, the superior performance of CCOA suggests its 
potential for widespread adoption in grid planning and 
operation. Its ability to handle complex, non-linear 
problems makes it suitable for other optimization tasks, 
such as capacitor placement or feeder reconfiguration 
(Ghofrani et al., 2013). Second, the demonstrated 
benefits of dual-BESS configurations highlight the 
importance of distributed energy storage in modern 
grids. As renewable energy penetration increases, 
utilities should consider multi-point BESS deployments to 
enhance system resilience and efficiency (De Sisternes 
et al., 2016). Third, the integration of PV with BESS 
offers a viable pathway for decarbonizing power systems 
while improving operational efficiency. Policymakers 
and grid operators should incentivize such hybrid 
systems to accelerate the energy transition (Datta et al., 
2021). 

5. Conclusion 
This study investigated the optimal placement and 

sizing of BESS in a 148-bus power distribution network to 
minimize power losses using the CCOA. The research 
demonstrated that CCOA outperformed COA, WOA, and 
PSO optimization techniques by achieving the lowest 
power losses across all tested scenarios. The integration 
of chaotic dynamics enhanced the algorithm’s ability to 
balance exploration and exploitation, preventing 
premature convergence and improving solution 
accuracy. The results established that dual-BESS 
configurations significantly reduced power losses 
compared to single-BESS setups, with reductions of up to 
51.4% in PV-integrated systems. The optimal placement 
of BESS units at strategic buses (e.g., Bus 87 for single-
BESS and Buses 63 & 107 for dual-BESS) improved voltage 
stability, maintaining minimum voltages above 0.95 pu 
across the network. Furthermore, the combination of 
BESS with solar PV generation further enhanced loss 
reduction, highlighting the synergistic benefits of hybrid 
renewable-storage systems in modern grids. The study 
also compared two optimization approaches, Sim_Op 
and Seq_Op, revealing that Sim_Op provided superior 
results by considering location and size 
interdependencies, while Seq_Op offered computational 
efficiency for real-time applications. These insights are 
crucial for utilities and grid operators in planning cost-
effective and resilient power distribution systems.  The 
proposed CCOA-based optimization framework provides 
a robust methodology for integrating BESS into 
distribution networks, particularly in renewable-rich 
environments. Future research should explore the 
following: Firstly, the economic feasibility of large-scale 
BESS deployment, including cost-benefit analysis. 
Secondly, the dynamic load and generation scenarios are 
used to assess real-time performance under varying 
conditions.  Lastly, the integration of other renewable 
sources (e.g., wind) with BESS for a more comprehensive 
energy management strategy.  This study contributes to 
the development of smarter, more efficient power grids, 
supporting global energy transition goals by advancing 
optimization techniques and hybrid energy solutions. 
The findings highlight the importance of intelligent BESS 
placement and sizing in achieving sustainable and 
resilient power distribution systems. 
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