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ABSTRACT 
 

  

ARTICLE INFO 

In our screening program for botanical pesticides from local plants, the powders and 
essential oils from Plectranthus marrubioides (Hochst ex Benth), Tetradenia riparia 
(Hochst Codd), Ocimum suave (Wild), Lippia javanica (Burm, Spreng), and Ocimum 
lamiifollium (Hochst ex Benth) were found to possess insecticidal activity against the 
maize weevil, Prostephanus truncatus. The essential oils from aerial parts of the plants 
were obtained by hydro-distillation and tested under laboratory conditions (25 ± 1ºC, 70–
75% R.H.) for their ability to protect the grains from damage by P. truncatus. The insects 
were reared and tested on whole maize grain (variety DK 8031). Bioassays were 
conducted using five dilution levels of essential oils in hexane (10, 5, 2.5, 1.25, and 
0.625% wt/wt), each tested on ten unsexed adult large grain borers per replicate, with 
four replicates per treatment. The mortality data of the insects at each level of dilution 
were collected, and the mean values were computed and subjected to Student-Newman-
Keuls (SNK) t-test. Essential oils were also tested as antifeedants of the insect in dried 
maize. It was observed that within the 0.625% level of dilution, the oil extracts showed 
a significant difference (𝑝 < 0.05) in the antifeedant test done using the different plant 
essential oils. Of the five plant oils, P. marrubioides and T. riparia showed the highest 
insecticidal activity with the lowest mean of 0.55 ±  0.15 and 0.40 ±  0.11, respectively, 
as compared to O. lamiifolium (2.4 ±  0.11), O. suave (2.55 ±  0.11), and L. javanica 
(2.5 ±  0.15) after a period of six months. The chemical constituents of the two most 
potent oils were analyzed by GC-MS. The main compounds in P. marrubioides essential 
oil were δ-2-carene (10.84%), o-cymene (8.72%), 1,8-cineole (7.89%), and camphor 
(5.65%). T. riparia essential oil was found to be rich in fenchone (24.74%), β-pinene 
(5.23%), o-cymene (5.16%), and 1,8-cineole (10.89%). These results show that these plant 
oils, and particularly P. marrubioides and T. riparia, have the potential to protect dry 
stored grain products from damage by the larger grain borer. Consequently, the plant oils 
can be developed into post-harvest control agents of the larger grain borer in stored grain 
products. 
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1. Introduction   

The Larger Grain Borer, Prostephanus truncatus 
(Horn) (Coleoptera: Bostrichidae) (Fig. 1) is a serious 
insect pest of maize (Zea mays), cassava (Manihot 
esculenta), wood, and other stored products (Nang’ayo 
et al., 2002; Quellhorst et al., 2021). Prostephanus 
truncatus is a major post-harvest pest in sub-Saharan 
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Africa, causing estimated maize and dried cassava losses 
of up to 30–40%, with economic losses ranging from USD 
18.2 billion to USD 78.9 million annually between the 
years 1970 and 2020 (Diagne et al., 2021), depending on 
infestation levels and control strategies. The latest 
report on the occurrence of P. truncatus in Botswana 
follows similar reports in neighboring countries, Zambia, 
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Namibia, South Africa, and Zimbabwe in 1993, 1998, 
1999, and 2005, respectively (Quellhorst et al., 2021). 
This invasive insect pest was introduced from its native 
Meso-American region into East Africa through Tanzania 
in the late 1970s (Dunstan & Magazini, 1981; Farrell & 
Schulten, 2002; Quellhorst et al., 2021). This devastating 
insect pest is a biosecurity threat that continues to 
spread around the world (Quellhorst et al., 2022), having 
already been recorded in 21 African countries among at 
least 36 reported territories globally (Quellhorst et al., 
2021). Adult Prostephanus truncatus attacks maize, 
creating large and noticeable holes that ultimately 
‘skeletonize’ the grains (Kumar, 2002; Quellhorst et al., 
2021) (Fig. 2). Larval Prostephanus truncatus feed 
mainly on the floury endosperm and the germ tissues 
(Vowotor et al., 1998). Prostephanus truncatus is among 
stored product pests that include the square-necked 
grain beetle, Cathartus quadricollis (Silvanidae), and 
the maize weevil, Sitophilus zeamais (Curculionidae), 
that have also been reported to facilitate colonization of 
stored grains by mycotoxigenic fungi such as Aspergillus 
spp. and Fusarium spp. that produce aflatoxins and 
fumonisins (Lamboni & Hell, 2009; Kheseli et al., 2011; 
Danso et al., 2018). The Larger Grain Borer Prostephanus 
truncatus can cause maize postharvest losses as high as 
56.7% within six months of storage and hence is a serious 
threat to food security and nutrition (Bezabih et al., 
2022). 

Control of Prostephanus truncatus has been a 
challenge (Quellhorst et al., 2022), and various control 
options are being considered for Integrated Pest 
Management (IPM) of this damaging insect pest (Tanda 
et al., 2022). Biopesticides, especially those based on 
insecticidal plants (Okwute, 2012; Zoubiri & 
Baaliouamer, 2014; Riyaz et al., 2022), have been 
attracting a lot of interest in the management of P. 
truncatus and other stored products pests (Mantzoukas 
et al., 2020; Gariba et al., 2021; Tanda et al., 2022). 
Among the main reasons behind the growing interest in 
insecticidal plants is their affordability and safety to 
human and animal health, besides not posing adverse 
effects to non-target biodiversity and the environment 
(Ponsankar et al., 2016; Riyaz et al., 2022). 

Various insecticidal plant species around the world 
are being investigated for their capacity to control 
Prostephanus truncatus (Bezabih et al., 2022). Such 
plant species include Horsewood or ‘Maggot Killer’ 
(Clausena anisata; Rutaceae), Silver Thistle (Carlina 
acaulis; Asteraceae), Lenten Rose (Helleborus odorus; 
Ranunculaceae), and Equilabium glandulosum 
(Plectranthus glandulosus; Lamiaceae), which has had 
nomenclatural disharmonies (Lukhoba et al., 2006; 
Nukenine et al., 2010; Rice et al., 2011; Kavallieratos et 
al., 2020; Mantzoukas et al., 2022). Besides, these are 
pesticidal plant species that have shown potential 
against mosquitoes (Culicidae) among other blood-
feeding insects, as well as arachnid pests (Omolo et al., 
2004; Omolo et al., 2022). These plants, traditionally 
used in pest control, such as those from the families 
Asteraceae, Lamiaceae, Solanaceae, and Verbenaceae, 
have demonstrated significant insecticidal properties. 

These plants are often rich in essential oils containing 
diverse bioactive compounds with pesticidal potential 
(Omolo et al., 2004; Ngari et al., 2019; Omolo et al., 
2022). Essential oils and powdered vegetative material 
from such plants contain various insecticidal and 
repellent chemical compounds that could be formulated 
into biopesticides. 

The present study investigated the feeding 
deterrence and contact toxicity of essential oils from 
Lippia javanica, Ocimum lamiifolium, Ocimum suave, 
Plectranthus marrubioides, and Tetradenia riparia 
against Prostephanus. truncatus. The results of the 
findings form a basis for the development of 
biopesticides for insect pests of stored food products and 
P. truncatus in particular. 

 
Fig. 1. Adult Prostephanus truncatus (A) (Gueye et al., 2008)  

2. Materials and Methods 

2.1. Plant material 

Fresh aerial plant parts that included leaves, stems, 
and flowers of L. javanica, O. suave, O. lamiifollium, P. 
marrubioides, and T. riparia were collected early in the 
morning from mature, healthy plants using sterilized 
secateurs and clean gloves within Baringo and Nakuru 
counties in Rift Valley, Kenya. Stems of 10–15 cm in 
length were selectively harvested to ensure uniformity 
across species. The plant materials were kept under 
shade, and their oils were extracted within 24 hours of 
their collection.  

2.2.  Experimental insects  

Experimental insects were derived from a colony of 
P. truncatus maintained at the Centre for African 
Medicinal and Nutritional Flora and Fauna (CAMNFF) at 
Masinde Muliro University of Science and Technology 
(MMUST). The insects were reared on maize seeds 
(Variety DK 8031, Kenya Seed Company Ltd, Kitale) in 1-
liter glass jars with meshed covers and placed in 
darkness under prevailing laboratory conditions (25 ±
 1ºC; RH 70-75%).  

2.3. Essential oil extraction 

A total of 500 g of aerial parts from Lippia javanica, 
Ocimum suave, Ocimum lamiifolium, Plectranthus 
marrubioides, and Tetradenia riparia were subjected to 
hydro-distillation for 6 hours using a Dean–Stark 
apparatus to minimize loss of thermolabile volatile 
compounds, following the method of Eisenbraun & Payne 
(1999). Plant material was immersed in water and 
heated to boiling, allowing volatile compounds (essential 
oils) to evaporate with the steam. The vapor was then 
condensed, and the immiscible oil layer separated from 
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the water. The extracted essential oils were dried over 
anhydrous sodium sulfate (Na₂SO₄) to remove residual 
moisture. The essential oils were collected in 5 mL 
amber-colored glass vials to protect them from light 
degradation and stored at 4 °C for subsequent bioassays. 

 
Fig. 2: Damaged maize grain from P. truncatus feeding (B) (Kumar, 

2002). 

2.4. Fumigant and contact toxicity of plant 

leaves on Prostephanus truncatus  

Dried maize grains (100 g) mixed with the test plant 
leaves (20 g) were placed in a transparent plastic jar 
(500 mL) with four sets of 20 pin holes on four upper 
sides for aeration. Unsexed adult P. truncatus (n=10) 
were introduced into the jar in four replicates per 
treatment, including a control comprising maize grains 
without the leaves. After every 28 days, dead and 
surviving P. truncatus were counted for a period of 6 
months. 

2.5. Feeding deterrence assay 

Feeding deterrence activity was assessed in terms of 
reduced consumption of maize grains in the form of 
damage and the number of holes. Dried maize seeds 
(n=30) were treated for 10 seconds with the oils 
dissolved in hexane at concentrations (wt/wt) of 10, 5, 
2.5, 1.25, and 0.625 %, while the positive control maize 
received hexane alone, and the negative control was left 
without any treatment. Both treated and control maize 
grains were air dried at room temperature for 30 min to 
allow the solvent to evaporate and then placed in 
transparent plastic jars (500 mL). Adult P. truncatus 

(n=5) were introduced into each jar before the maize 
grains were added, and the tests were done in four 
replicates arranged in a randomized block design (RBD) 
on a bench. Tests were conducted in four replicates 
across the treatment concentrations. Each replicate 
consisted of a separate test jar, and unsexed adult 
insects were used once per replicate without reusing 
between treatments. The insects were reared in a dark 

room under laboratory conditions (25 ±  1ºC; RH 70-
75%). After 28 days, dead and live P. truncatus were 
counted. The total number of destroyed seeds and holes 
per seed was used to estimate consumption and hence 
damage to the maize.  

2.6. Analysis of the oil constituents 

Analyses of the oils and identification of the 
chemical components were carried out using an Agilent 
Gas Chromatograph (GC) (Model 7890B, Country of 
origin?) coupled to a Quadropolar Mass Spectrometer 
(QMS) (Model 5977A, Agilent Technologies, US) and GC 
co-injection of the essential oils with authentic samples 
(Nangari et al., 2019). Analyses were performed on a 
capillary Gas Chromatograph (Hewlett Packard (HP) 5890 
Series II, equipped with a split-less capillary injector 
system, 50m·0.2mm (I.d.) crossed-linked methyl silicone 
(0.33 μm film thickness) capillary column, and flame 
ionization detector (FID) coupled to HP 3393A Series II 
integrator. The carrier gas was N2 at 0.7 mL min-1. The 
temperature program consisted of an initial 50°C (5 min) 
to 280°C at 5°C min-1 and held at this temperature for 
10 min.  

Gas Chromatography–Mass Spectrometry (GC-MS) 
analyses were carried out on an HP 8060 Series II Gas 
Chromatograph coupled to a VG Platform II Mass 
Spectrometer. The MS was operated in the EI mode at 70 
eV and an emission current of 200 μA. The temperature 
of the source was held at 180°C and the multiplier 
voltage at 300 V. The pressure of the ion source and MS 
detector were held at 9.4 x 10-6 and 1.4 x 10-5mbar, 
respectively. The MS had a scan cycle of 1.5s (scan 
duration of 1s and inter-scan delay of 0.5s). The mass 
and scan ranges were set at m/z 1–1400 and 38–650, 
respectively. The instrument was calibrated using hepta-
cosafluorotributyl amine, [CF3-(CF2)3]3N, (Apollo 
Scientific Ltd, UK). The column used for GC-MS was the 
same as the one described for GC analysis, except for 
the film thickness (0.5μm). The temperature programme 
involved an initial temperature of 50°C (5 min), to 90°C 
at 5°C min-1, to 200°C at 2°C min-1, to 280°C at 20°C 
min-1, and a hold at this temperature for 20 min. 
Identification of the components was made by 
comparison of mass spectra with published data (NIST, 
Wiley) and confirmed, where possible, by GC co-
injections with authentic samples.  

2.7. Statistical analysis 

Data on P. truncatus mortality in the fumigant and 
contact toxicity assay, as well as data on grain damage 
and number of holes in the feeding deterrence assay, 
were subjected to Shapiro wilk test for normality test 
before subjecting to analysis of variance (ANOVA) in Proc 
GLM and the means separated using Student-Newman-
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Keuls (SNK) t-test in Statistical Analysis System (SAS 
versions 9.1) (SAS, 2004). Data on P. truncatus mortality 
at different concentrations of essential oils in the 
feeding deterrence assay were log-transformed and 
subjected to Probit regression analysis to determine 
lethal concentrations (LC75 and LC95) using EPA Probit 
Analysis Program version 1.4 (US EPA, 1988 

3. Results and Discussion 

Mortality of P. truncatus was significantly higher in 
maize grains with leaf material from all five tested 

plant species compared to the controls by the end of 
the first month (Table 1), which confirms the 
pesticidal potential of L. javanica, O. lamiifolia, O. 
suave, P. marrubioides, and T. riparia leaves (Bekele 
et al., 1996; Omolo et al., 2004; Zoubiri & 
Baaliouamer,2014; Kamanula et al., 2017; Ejeta et al., 
2021). By the end of the fifth month, mortality of P. 
truncatus was highest in maize grains that were 
treated with P. marrubioides and T. riparia leaves, 
compared to those treated with L. javanica, O. 
lamiifolium, and O. suave (Table 1).

 
Table 1: Mortalities (𝑀𝑒𝑎𝑛 ±  𝑆𝐸) of Prostephanus truncatus treated with essential oils from different plant species over a five-month period. 

Treatment Mortalities 

 Month 1 Month 2 Month 3 Month 4 Month 5 

Control 0.50 ± 0.28 b 0.50 ± 0.28 c 0.50 ± 0.29 c 0.75 ± 0.25 c 0.75 ± 0.25 c 
Lipia javanica 1.75 ± 0.25 a 2.00 ± 0.08 b 2.00 ± 0.08 b 2.75 ± 0.25 b 3.00 ± 0.41 b 
Ocimum lamiifollia 1.50 ± 0.64 a 1.50 ± 0.65 b 2.00 ± 0.41 b 2.75 ± 0.25 b 2.50 ± 0.29 b 
Ocimum suave 1.25 ± 0.75 a 2.25 ± 0.63 b 2.50 ± 0.50 b 2.78 ± 0.48 b 2.75 ± 0.48 b 
Plectranthus marrubioides 2.25 ± 0.25 a 3.50 ± 0.65 a 3.73 ± 0.48 a 3.75 ± 0.48 a 4.50 ± 0.64 a 
Tetradenia riparia  1.75 ± 0.48 a 2.00 ± 0.41 b 3.00 ± 0.41 a 3.25 ± 0.25 a 3.75 ± 0.48 a 

Means followed by the same letter within a column are not significantly different at P < 0.05 according to the 

student-Newman-Keuls (SNK) test. 
 
Grain damage and the number of holes in the grains 

were lower in those treated with essential oils from all 
five plant species, especially after the first month to the 
sixth month (Table 2). Grain damage and the number of 
holes in the grains were lowest in maize grains that were 
treated with essential oils from P. marrubioides and T. 
riparia, compared to those treated with essential oils 
from L. javanica, O. lamiifollium, and O. suave (Table 
2). Grain damage and the number of holes in the grains 
treated with hexane solvent were lower compared to the 
controls, with even further reduction in the two 
parameters when dissolved essential oils from any of the 
five plant species were present (Table 2). Essential oils 
from the five plant species exhibited varying efficacies, 
with P. marrubioides being the most effective as per the 
lowest lethal concentrations (LC75 = 0.2; LC95 = 1.8), 
followed by T. riparia (LC75 = 5.6; LC95 = 7.0), then L. 
javanica (LC75 = 13.9; LC95 = 21.0), O. suave (LC75 = 55.1; 
LC95 = 78.7) with O. lamiifollium having the highest 
lethal concentration and hence the weakest (LC75 = 
231.3; LC95 = 324.7). Of the nineteen (19) and twelve 
(12) compounds identified in Plectranthus marrubioides 
and in Tetradenia riparia, respectively (Fig. 3 & 4: Table 
3), six (6) compounds present in both plant species 
included o-Cymene C10H14, 1,8-Cineole C10H18O, γ-
Terpinene C10H16, Fenchone C10H16O, Borneol C10H18O, 
and (E) β-Caryophyllene C15H24. Some of these 
compounds have been detected in the genera of the two 
plant species (Abdel-Mogib et al., 2002; Lukhoba et al., 
2006; Blythe et al., 2020), and may include those 
especially in Plectranthus spp, whose chemistry has not 
been well known (Abdel-Mogib et al., 2002; Lukhoba et 
al., 2006). The compound o-cymene exhibits insecticidal 
activity through strong fumigant and contact toxicity 
(Feng et al., 2021), which has been demonstrated 
against Tribolium castaneum and Liposcelis 
bostrychophila (Feng et al., 2021).  

However, o-cymene has also been found to be 
attractive to honey bees (Fernandes et al., 2019; Dekebo 
et al., 2022). The compound 1,8-Cineole exhibits 
fumigant toxicity as observed against Musca domestica 
(Rossi & Palacios, 2015). Fenchone is part of bioactive 
chemical compounds in essential oils of Lavandula 
dentata (Lamiaceae), which have been found to exhibit 
insecticidal activities towards Sitophilus zeamais, 
Tribolium castaneum, and Epicauta atomaria (Wagner et 
al., 2021). Insecticidal mechanisms of action 1,8-Cineole 
and Fenchone include inhibition of acetylcholinesterase 
(AChE) and cytochrome P450 system, blockage of γ-
aminobutyric acid (GABA)-gated chloride channels, and 
agonist of octopamine receptors (Rossi and Palacios, 
2015; Şengül Demirak & Canpolat, 2022). The γ-
terpinene compound exhibits larvicidal and ovicidal 
activities against the cotton bollworm (Helicoverpa 
armigera) (Gong & Ren, 2020). Borneol has been found 
to inflict mortality on red imported fire ant (Solenopsis 
Invicta) through fumigant toxicity (Zhang et al., 2014). 
(E )-β-caryophyllene and Caryophyllene oxide exhibit 
insecticidal, antifeedant, and growth inhibition 
activities (Langenheim, 1994; Huang et al., 2012; Liu et 
al., 2012), while acting as a nerve poison to pests 
through anticholinesterase and via sodium channel 
modulators, among other mechanisms of action (Liu et 
al., 2012; Paventi et al., 2020; Sengül Demirak & 
Canpolat, 2022). Information has been scarce on possible 
insecticidal mechanisms of Sylvesterene, δ-Cadinene, 
and γ-Muurolene; as well as whether the remaining three 
compounds, 7-oxabicyclo [4.1.0] heptan-2-one, 3-
methyl, Allo aromadendrene epoxide, and 4-hydroxy,1H 
indole-3-carboxylic acid detected in P. marrubioides, 
have any insecticidal potential. The other compounds 
and their mode of action are summarized (Table 4).
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Fig. 3: Total ion chromatogram (TIC) obtained by coupled GC- MS analysis of vacuum distillates of Plectranthus marrubioides. Peak numbers 

correlate to compounds listed in Table 3 

 

 

 

 

 
Fig. 4: Total ion chromatogram (TIC) obtained by coupled GC- MS analysis of vacuum  

distillates of T. riparia. Peak numbers correlate to compounds listed in Table 3. 

 
Tetradenia riparia expressed six other chemical 

compounds that included α-Pinene C10H16, β-Pinene 
C10H16, 5-methyl, 3-hepten-2-one C8H14O, E-Ocimene 
C10H16, Allo Ocimene C10H16, and β-Bourbonene C15H24. 
The insecticidal effects of α-Pinene and β-Pinene have 
been associated with mechanisms of action that include 
inhibition of AChE and cytochrome P450 system, 
blockage of GABA-gated chloride channels, and agonist 
of octopamine receptors (Şengül Demirak & Canpolat, 
2022). α-Pinene exhibits a repellent effect to honey bees 
(Fernandes et al., 2019; Dekebo et al., 2022). β-
Bourbonene and (E)-β-ocimene are volatile organic 
compounds (VOCs) used in indirect plant defenses 
through attraction of natural enemies towards insect-
attacked host plants (Takabayashi et al., 1991; Klimm et 
al., 2020), while (E)-β-ocimene also attracts pollinators 
towards floral parts (Knudsen et al., 2004; Tan & Nishida, 
2012; Farré-Armengol et al., 2017). E-β-ocimene also 
partially inhibits ovary development in the worker caste 
of the honey bees Apis mellifera (Maisonnasse et al., 
2010). Both β-ocimene and allo-ocimene are volatile 
pheromones that are the primary signals of A. mellifera 
larvae used in begging for care from the nurses through 
odorant binding proteins (OBPs)/chemosensory proteins 
(CSPs) (Maisonnasse et al., 2010; Wu et al., 2019). There 

is a scarcity of information on possible insecticidal 
activities of 5-methyl-3-hepten-2-one detected in T. 
riparia. 

The general trends in the results of this study 
indicated that P. marrubioides and T. riparia inflicted 
the highest P. truncatus mortality, with the least grain 
damage among the five plant species. Although without 
statistically significant differences, numerical trends 
throughout the 6 months indicate that pesticidal 
compounds of P. marrubioides inflicted higher 
mortalities (Table 1), while those of T. riparia had the 
best effect in reducing grain damage (Table 2). These 
differences were partly confirmed in the efficacy tests, 
whereby essential oils of P. marrubioides had the lowest 
lethal concentration and hence the most toxic (LC75 = 
0.2; LC95 = 1.8) compared to T. riparia (LC75 = 5.6; LC95 
= 7.0).  

The six chemical compounds common in both P. 
marrubioides and T. riparia included o-Cymene, 1,8-
Cineole, γ-Terpinene, Fenchone, Borneol, and (E) β-
Caryophyllene, and accounted for 25% and 44.8% total 
concentration in P. marrubioides and T. riparia, 
respectively. Trends in the concentrations of these six 

file:///C:/Users/Sandy/Downloads/Judith_proof%20(1).docx%23Fig3
file:///C:/Users/Sandy/Downloads/Judith_proof%20(1).docx%23Table3
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Table 2: Mean ± SE of seed damage and number of holes by Callosobruchus maculatus over six months 

Treatment Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 

 Damage Holes Damage Holes Damage Holes Damage Holes Damage Holes Damage Holes 

Control 4.0 ± 0.4 a 31.3 ± 6.0 a 6.3 ± 0.5 a 60.0 ± 1.8 a 9.0 ± 0.4 a 73.0 ± 1.4 a 10.8 ± 0.5 a 79.3 ± 3.3 a 14.5 ± 1.6 a 86.3 ± 3.4 a 16.3 ± 1.1 a 91.8 ± 4.5 a 
Hexane 1.3 ± 0.3 b 3.8 ± 0.9 b 3.0 ± 0.4 b 27.0 ± 4.8 b 3.3 ± 0.3 b 40.0 ± 4.4 b 4.3 ± 0.8 b 46.8 ± 4.6 b 5.5 ± 0.7 b 53.5 ± 5.0 b 7.8 ± 0.8 b 61.3 ± 3.8 b 
L. javanica 1 0.8 ± 0.2 b 0.9 ± 0.2 c 1.4 ± 0.2 d 1.5 ± 0.2 d 1.6 ± 0.1 d 2.6 ± 0.3 c 1.8 ± 0.1 c 3.0 ± 0.3 c 2.1 ± 0.2 c 3.6 ± 0.4 c 2.5 ± 0.2 c 4.1 ± 0.4 c 
O. lamiifollia 2 1.2 ± 0.1 b 1.2 ± 0.1 c 1.8 ± 0.1 c 2.1 ± 0.1 c 1.9 ± 0.1 c 2.3 ± 0.1 c 2.0 ± 0.1 c 2.6 ± 0.1 c 2.3 ± 0.1 c 2.9 ± 0.2 d 2.4 ± 0.1 c 3.1 ± 0.1 d 
O. suave 3 1.4 ± 0.1 b 1.5 ± 0.2 c 1.6 ± 0.2 c 2.1 ± 0.2 c 1.9 ± 0.1 c 2.6 ± 0.2 c 2.0 ± 0.1 c 2.9 ± 0.2 c 2.4 ± 0.1 c 3.2 ± 0.2 c 2.6 ± 0.1 c 3.6 ± 0.2 c 
P. marrubioides 
4 

0.1 ± 0.1 c 0.1 ± 0.1 d 0.3 ± 0.1 e 0.4 ± 0.1 e 0.5 ± 0.2 e 0.5 ± 0.2 d 0.5 ± 0.2 d 0.6 ± 0.2 d 0.6 ± 0.2 d 0.6 ± 0.2 e 0.6 ± 0.2 d 0.7 ± 0.2 e 

T. riparia 5 0.0 ± 0.0 c 0.0 ± 0.0 e 0.2 ± 0.1 e 0.2 ± 0.1 e 0.3 ± 0.1 e 0.4 ± 0.1 d 0.4 ± 0.1 d 0.5 ± 0.1 d 0.4 ± 0.1 d 0.5 ± 0.1 e 0.4 ± 0.1 d 0.5 ± 0.2 e 

Values followed by different letters within the same column are significantly different (p < 0.05). Damage refers to the number of seeds visibly damaged by bruchid activity, while holes indicate 
perforations on seed surfaces. Lethal concentrations (LC75; LC90) for 1 L. javanica (13.9; 21.0), 2 O. lamiifollia (231.3; 324.7), 3 O. suave (55.1; 78.7), 4 P. marrubioides (0.2; 1.8), and 5 T. riparia 
(5.6; 7.0). 

 
 
 
 

Table 3: The chemical compositions of essential oils of Plectranthus marrubioides and Tetradenia riparia plants 
 Plectranthus marrubioides     Tetradenia riparia 

Peak Retention time % Area Peak identity  Retention time % Area Peak identity 

1 11.58 10.84 δ 2- Carene  9.87 2.92 α-Pinene 
2 11.73 8.72 o-Cymene*  10.77 5.23 β- Pinene 
3 11.84 7.89 1,8- Cineole*  11.17 0.57 5-methyl, 3-hepten-2-one 
4 12.34 1.47 γ-Terpinene*  11.73 5.16 o-Cymene* 
5 12.9 0.81 Fenchone*  11.84 10.89 1,8-Cineole* 
6 13.43 0.69 Cyclooctanone  12.34 1.89 γ- Terpinene* 
7 13.84 5.65 Camphor  12.9 24.74 Fenchone* 
8 14.17 0.32 Borneol, heptafluorobutyrate*  13.05 1.55 E-Ocimene 
9 14.33 0.61 Terpinen-4-ol  13.52 1.7 Allo Ocimene 
10 15.29 1.02 iso-Sylvesterene  14.17 1.51 Borneol* 
11 15.56 2.25 7-oxabicyclo [4.1.0] heptan-2one,3methyl  17.4 1.01 β-Bourbonene 
12 17.44 0.47 Germacrene A  17.71 0.63 (E)-Caryophyllene* 
13 17.87 5.79 (E)-Caryophyllene*  - - - 
14 18.29 0.89 α-Humulene  - - - 
15 19.12 1.26 δ- Cadinene  - - - 
16 19.82 1.45 Allo aromadendrene epoxide  - - - 
17 20.27 1.34 4 Hydroxy, 1H indole -3-carboxylic acid  - - - 
18 20.69 2.88 α-Cadinol  - - - 
19 21.14 0.54 γ-Muurolene  - - - 

*Chemical compound exists in both plant species 
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chemical compounds indicate that, apart from o-
Cymene, which was in higher concentration in P. 
marrubioides, the other five compounds, and especially 
Fenchone, were in higher concentrations in T. riparia. 
Furthermore, with a smaller number of compounds 
detected in T. riparia, those twelve (12) compounds 
accounted for 57.8% of the total concentration, while 
the nineteen (19) compounds detected in P. 
marrubioides accounted for a lower concentration of 
54.9%. The diversity and concentration of chemical 
compounds in the essential oils of Plectranthus 
marrubioides may suggest the potential for synergistic 
interactions contributing to the observed insecticidal 
efficacy. However, such synergism was not directly 
assessed in the present study and remains a subject for 

future investigation, when compared to T. riparia, 
whose efficacy may have been more reliant on the high 
concentration of Fenchone (24.74%). However, this 
assumption does not exclude the possible involvement of 
other insecticidal chemical compounds in the two plant 
species, including alkaloids (Rattray & Van Wyk, 2021), 
which may not have been detected in the GC-MS analyses 
applied in the current study. Essential oils of P. 
marrubioides and T. riparia show insecticidal and 
feeding deterrent effects against P. truncatus, 
supporting their potential as biopesticides. However, 
formulation and delivery remain unknown. Future 
studies should assess formulation stability, safety, and 
field applicability. 

Table 4: Plectranthus marrubioides chemical compounds and their mode of action. 

Compound name Mode of Action / Effect References 

Camphor (C₁₀H₁₆O) Contact & fumigant toxicity to S.granarius, S.zeamais, T.castaneum, P.truncatus 
AChE inhibition 

(Obeng-Ofori et al., 1998) 

δ 2-Carene (C₁₀H₁₆) Fumigant toxicity to C. maculatus, S. oryzae, T. castaneum; AChE inhibition (Hashemi & Safavi, 2012) 
α-Cadinol (C₁₅H₂₆O) AChE inhibition (Rants’o et al., 2022) 
Terpinen-4-ol (C₁₀H₁₈O) Toxic to Oriental armyworm via P450, GSTs, PPO inhibition (Zhang, 2008) 
iso-Sylvesterene (C₁₀H₁₆) Contact toxicity; causes mortality and developmental disruption in D. 

peruvianus, An.gambiae, Cx. quinquefasciatus 
(Pacheco et al., 2020) 

Germacrene A (C₁₅H₂₄) Indirect defense via attraction of predators; aphid alarm pheromone precursor (Huber et al., 2016) 
Cyclooctanone (C₈H₁₄O) Alarm pheromone in ants (Pogonomyrmex badius) (Blum, 1969; Blum et al., 1971) 
α-Humulene (C₁₅H₂₄) Contact toxicity; inhibits respiratory chain complexes II–IV (Kim & Lee, 2014; Paventi et al., 

2020; Plata-Rueda et al., 2018) 
δ-Cadinene (C₁₅H₂₄) Insecticidal activity against Bruchus dentipes, An. stephensi, Ae. aegypti, Cx. 

quinquefasciatus 
(Govindarajan & Benelli, 2016; 
Tozlu et al., 2011; Vaglica et al., 
2022) 

γ-Muurolene (C₁₅H₂₄) Toxicity to Bruchus dentipes (Vaglica et al., 2022) 
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