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ARTICLE INFO 

The rapid increase in global population has driven a surge in users of radio technology, 
leading to a shortage of available frequency spectrum for wireless systems. To optimize 
the use of limited spectrum, secondary (unlicensed) users can access the spectrum of 
primary (licensed) users when it is temporarily unused. These unused portions of 
spectrum are called spectrum holes or white spaces. Cognitive radios play a key role by 
performing spectrum sensing to detect when the spectrum is available for secondary 
users. Real-time spectrum detection is essential for allowing secondary users to access 
the spectrum without interfering with primary users. However, existing spectrum sensing 
methods often suffer from poor detection accuracy due to channel fading and noise. This 
research focuses on the design and evaluation of machine learning-based spectrum 
sensing algorithms for Cognitive Radio 5G networks. A hybrid sequential clustering 
algorithm, which combines Particle Swarm Optimization (PSO) with the K-means 
algorithm, is proposed. In this approach, PSO, a population-based optimization 
technique, determines the initial centroids and provides an optimal starting point for 
clustering. K-means then partitions the sensed spectrum into two clusters: occupied and 
unoccupied. Extensive simulations in Python were conducted to evaluate the 
performance of the PSO-K algorithm in various 5G network scenarios. Analysis of 
detection accuracy demonstrated a 9.3% improvement compared to traditional energy 
detection techniques. 
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1. Introduction   

The global population is increasing daily, resulting in 
a growing number of wireless communication users, as 
reported by Cisco (2020). As society becomes more 
reliant on wireless communication networks, there is a 
need for more efficient and dependable technology to 
accommodate the escalating demand for bandwidth. The 
valuable resource of the electromagnetic spectrum is 
encountering scarcity issues.  

The emergence of accelerated telecommunication 
platforms has resulted in numerous users vying for this 
limited resource. This has led to a scarcity of accessible 
frequency slots for all users, necessitating innovative 
technology to address spectrum utilization issues and 
facilitate optimal usage by multiple users. The 
electromagnetic spectrum has been under intense 
pressure because of the rapid expansion of wireless 
communication technologies over the past few years 
(Walker, 2023; International Telecommunication Union, 
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2023). There is a real risk of congestion and shortage of 
the accessible spectrum owing to the increased use of 
this naturally occurring scarce resource. 

Fifth-generation or 5G mobile networks, represent a 
significant advancement over previous generations of 
mobile communication technology that is 4G/LTE. It 
aims to provide faster speeds, lower latency, greater 
capacity, and more connected devices. The spectrum for 
5G is divided into three main categories: low-band, mid-
band, and high-band (Cadence, 2022). Frequency in the 
mid band range, specifically within the 3.2 GHz to 6 GHz 
range, are commonly used because of its balance 
between range and bandwidth. This band is normally 
crowded due to many devices operating in the same 
area. To solve the issue of spectrum scarcity, Mitola & 
Maguire (1999) initially proposed cognitive radio. CR 
posits that a communication device can modify its 
transmission parameters according to an evaluation of 
the state of the target frequency channel to satisfy 
certain performance requirements. According to (Singh, 
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2017), the primary function of a CR is to analyze the 
spectrum to detect a spectrum hole and permit a 
secondary user, SU, to utilize it without causing 
interference. Spectrum holes denote the unoccupied 
frequency ranges within the radio spectrum (Sundrous & 
Alaa, 2014). If a spectrum hole exists, the CR can 
transmit inside the vacant frequency range until the 
Primary user, PU, resumes communication. A primary 
user is a licensed user and can use the spectrum 
exclusively. On the hand a secondary user is unlicensed 
and can only use the spectrum when it is vacant. In the 
work by Yucek & Arslan (2009), CR must consequently 
detect the spectrum and modify its broadcast settings 
accordingly. 

The primary responsibility of the CR in a cognitive 
radio network, CRN, is spectrum sensing. Spectrum 
sensing constitutes the principal obligation of CRs within 
a CR network (Alhakami et al., 2014). Before initiating a 
transmission, it is essential to evaluate the existing 
spectrum occupancy and to identify any gaps within the 
spectrum in a certain area. The efficacy of the CR 
network depends on this critical role. Spectrum sensing 
is essential in CR networks, as it allows devices to detect 
and identify available spectrum bands for opportunistic 
utilization. A variety of strategies have been utilized to 
detect the presence of Primary users (PUs). Spectrum 
sensing based on energy detection was proposed by 
Gupta & Kumar (2019). In their work measuring the 
power of the received signal, the CR may determine 
whether a signal is present. By comparing the output of 
the energy detector with a specified threshold, spectral 
holes can be identified. Matched filtering detection is a 
spectrum sensing technique that senses the primary user 
when the transmitting power of the primary user is 
known. According to Dannana et al. (2018), when an 
unidentified signal corresponds to the transmission 
power of the signal, it is concluded that a PU is present 
in the spectrum. This provides a high signal-to-noise 
ratio for the designated input. To accomplish this, the 
CR must possess a comprehensive understanding of PU 
signal characteristics, including the operating frequency 
and bandwidth.  

George & Prema (2019) suggested cyclostationary 
features as a method for feature detection. Signal 
statistics such as autocorrelation and mean show 
periodicity, which gives rise to cyclostationary 
properties. Periodicity is established to make spectrum 
detection easier. This technique uses a cyclic correlation 
function to detect the existence of a PU within a given 
spectrum. It isolates the signal from the PU and filters 
the background noise. The difference between the 
transmitted signals and noise can be used because noise 
signals do not have periodic features. This technique 
confirms the presence of the main users by analyzing the 
periodicity of the received signal. Chen & Nagaraj (2008) 
used entropy-based spectrum sensing. The entropy of a 
signal is a measure of the typical amount of information 
that is conveyed. The entropy of a signal was computed 
using a method based on histograms. The number of 
histogram bins is directly proportional to the number of 
energy levels in the PU signal. Spectrum occupancy is 

determined by computing the entropy at the CR and then 
comparing it with a threshold. Machine learning 
techniques have been used in spectrum sensing to 
improve the efficiency of cognitive radio networks. 
Muzaffar & Sharqi (2023) proposed an energy-based 
Machine Learning Spectrum Sensing in 5G Cognitive 
Radios. Ali & Hamouda (2016) proposed a naïve Bayes 
classifier to sense spectrum holes. Using signal 
eigenvalues and a clustering approach, (Wang et al., 
2018) presented a spectrum-sensing method. This 
approach trains a classifier using signal eigenvalues and 
a K-means clustering technique and then uses the 
classifier to determine if the main user signal is there. A 
K-means clustering based blind multiband spectrum 
sensing algorithm for cognitive radio was proposed by Lei 
et al. (2018). Fouda et al. (2024) suggested a weighted 
joint likelihood ratio test for cooperative spectrum 
sensing using K-means clustering. 

Kumar et al. (2016) suggested an approach to 
spectrum sensing that relies on k-means clustering. His 
approach used a K-means clustering technique to 
categorize features such as signal energy into two 
groups: those whose channels were available and those 
whose channels were unavailable. Arjoune & Kaabouch 
(2019) proposed an approach. This approach proposed 
labelling a dataset using K-means clustering, which 
divides the received PU signal into two categories: 
present and absent. In their work, Several ML algorithms, 
including K-Nearest Neighbors (KNN), support vector 
machines (SVM), logistic regression (LR), decision tree 
(DT), and random forest (RF), were used to classify the 
received signals into one of two classes after they were 
split into them. Gupta et al. (2021) suggested 
evolutionary algorithm for spectrum sensing in 5G 
cognitive radio networks. Besides, the particle swarm 
optimization (PSO) algorithm has shown very effective 
performance in CRN. Authors in Gul et al. (2021) 
suggested a robust spectrum sensing against malicious 
users using particle swarm optimization. 

2. Materials and Methods  

      In this study, PSO-K means algorithm was 
employed to detect spectrum availability. The PSO-K 
Means technique is a hybrid method that integrates PSO 
with K-Means clustering to improve the clustering 
efficacy. This study employed the Particle Swarm 
Optimization-based K-means (PSO-K) technique to 
ascertain the existence or absence of a PU signal in 
spectrum sensing. The methodology has two principal 
elements: an optimization algorithm and a clustering 
algorithm. Energy-based feature extraction was 
employed to improve the detection procedure. Fig. 1 
presents a detailed flow chart describing the operation 
of the PSO-K Means algorithm, accompanied by examples 
for each scenario. 

This hybrid strategy utilizes the global optimization 
strengths of PSO to identify effective initial cluster 
centroids, which are subsequently refined by the local 
search skills of the K-means algorithm. K-means is a 
common clustering approach that partitions a dataset 
into K clusters. Each data point was allocated to the 
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cluster corresponding to the nearest mean (centroid), 
and the centroids were successively refined until 
convergence was achieved. The objective of k-means 
clustering is to minimize the aggregate of squared 
distances between each data point and its respective 
cluster centroid, referred to as the within-cluster sum of 
squares (WCSS).  

2.1. Data Generation 

First, the process begins by defining the spectrum 
environment. The frequency band for spectrum sensing 
is specified. In this study, a 5G mid-band frequency was 
selected, with frequencies ranging from 3.8 GHz 7 GHz. 
Then, the signal characteristics were determined. The 
PU transmission power level was observed as 20dBm. 

Orthogonal frequency-division multiplexing (OFDM) was 
used as the modulation technique, and Additive White 
Gaussian Noise was assumed in the channels. Second, PU 
Activities were simulated. This was accomplished by 
creating models for spectrum utilization by PUs.  The 
model involved periodic usage patterns in the spectrum. 
The patterns provided details of the periods of activity 
and inactivity (spectrum holes). Synthetic signals were 
then generated for the PUs considering their modulation 
schemes, power levels, and signal characteristics. 
Python was used to generate the signals because it has 
rich libraries and packages integrated with signal 
processing. Simulations were performed to introduce SUs 
to potentially transmit simultaneously with PUs.

 
Fig. 1: Methodology flow chart 

 

2.2. Data Collection  

Information about spectrum usage, signal 
characteristics, and network performance was acquired. 
Parameters such as the signal strength, frequency bands 
in GHz, and modulation types were considered. 
Simulations were performed in Python to model the 
spectrum-usage scenarios. Parameters for data 
collection were then set up, and Python was configured 
to run multiple scenarios with varying signal-to-noise 
ratios (SNR) and different threshold levels. Simulations 
were performed as per the design, and the data were 
collected and recorded. The simulated results were then 
compared with theoretical values to ensure the validity 
of the simulation.   

2.3. Feature Extraction 

ML-based feature extraction was also employed. 
First, data collected was taken, and it included both PU’s 
transmission and any noise present in the spectrum. 
Relevant features were identified and extracted from 
the dataset.  Energy levels were used as features derived 
from the various characteristics of each frequency 

range. These features were then refined. Subsequently, 
the average energy levels were computed. Eq. 1 shows 

the computation of these features, where (𝑍𝑛(𝑘))2 is the 
energy of the kth sample. 

2.3.1. Initialization 
The number of particles used was 1000. The number 

of clusters (k) was then determined and two clusters 
were obtained. The first cluster represents PU presence, 
and the second cluster represents PU absence. The 
number of iterations was also determined and 300 
iterations were used. The iterations represent the 
maximum number of generations performed before 
converging to the optimal solution. Position Initialization 
was performed, where each particle in the swarm was 
assigned an initial random position in the search space. 
This position represents a potential set of centroids in 
the k-means clustering algorithm. The positions were 
defined randomly based on the range of the signal`s 
energy levels. In addition to these positions, each 
particle was assigned an initial velocity. 
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                                       𝐸𝑛 =  
1

𝐾
∑(𝑍𝑛(𝑘))2

𝐾

𝐾=1

                           (1) 

Velocities were initialized randomly but within a range 
to ensure that the particles effectively explored the 
search space without exceeding the bounds. The position 
and velocity of the particles were determined using Eq. 
2 and Eq.3 respectively. 

  𝑉𝑖𝑑
𝑡+1  

=  𝑤 𝑥  𝑣𝑖𝑑
𝑡  +  𝑐1𝑟1 (𝑝𝑖𝑑

𝑡 −  𝑥𝑖𝑑
𝑡 )  +  𝑐2𝑟2 (𝑝𝑔𝑑

𝑡

−  𝑥1𝑑
𝑡 )                                                                                          (2) 

                            𝑥𝑖𝑑
𝑡+1  =  𝑥𝑖𝑑

𝑡 +  𝑣𝑖𝑑
𝑡+1                                  (3) 

where 𝑤 is the inertia weight, 𝑥𝑖𝑑
𝑡 and 𝑣𝑖𝑑

𝑡  represents the 

position and velocity of the particle 𝑖 in the d 

dimensional space, at time 𝑡.  𝑐1 is the self-learning 

factor, while  𝑐2 is the group learning factor, 𝑟1  and 𝑟2 

are random numbers ranging from 0 to 1.  𝑝𝑖𝑑
𝑡  is the 

particle best value, or local best, and 𝑝𝑔𝑑
𝑡  is the swarm’s 

best value or global best. 

2.3.2. Fitness Evaluation 
This process evaluates the extent to which a 

particular solution solves a problem. The fitness of each 
particle was evaluated based on the extent to which 
centroids were represented in the cluster of the dataset. 
The goal of K-means clustering was to minimize the 
WCSS, leading to tightly packed clusters with low 
variance. The WCSS for each particle in the clusters was 
calculated using Eq. 4. 

                         𝑊𝐶𝑆𝑆 = ∑ ∑ [
(𝑥1 − 𝜇𝑘)2

1
]

𝑥1∈𝑘

𝑘

𝑘=1

                       (4) 

where 𝑘 is the number of clusters; 𝑥1 represents the data 

points; 𝜇𝑘 is the centroid of the cluster 𝑐𝑘,and 𝑥1 − 𝜇𝑘,is 
the Euclidean distance between the data point 𝑥1 and 

centroid 𝜇𝑘. A lower WCSS indicates that the data points 
within a cluster are close to each other and to the 
centroid, implying better-defined clusters. Euclidean 
distance is a distance metric used in the K-means 
algorithm to calculate the distance between data points 
and centroids. The Euclidean distance between two 
points 𝑥 = (𝑥1, 𝑥2, … . , 𝑥𝑛) and 𝑦 =  (𝑦1, 𝑦2, … , 𝑦𝑛) in n-

dimensional space is given by Eq.5. where 𝑥1 and𝑦1 
represent the coordinates of the two points in the i-th 

dimension and (x1  −  y1) 2 is the squared difference 
between the coordinates of the two points. The K-means 
algorithm determines the optimal clustering strategy by 
minimizing the Within-Cluster Sum of Squares (WCSS) for 
each data point. Minimizing the WCSS distance, which is 
calculated as the sum of the squared distances between 
the points and their respective centroids, requires 
decreasing the Euclidean distances within each cluster.  

                                 𝑑(𝑥, 𝑦)√∑(𝑥1 − 𝜇𝑘)2

𝑛

𝑖=1

                      (5) 

The fitness of each particle was then calculated based 
on the energy levels of the corresponding frequency 
bands per work by Ratanavilisagul (2020). Eq. 6 shows 
the fitness function. 

                  𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =   
𝑚𝑎𝑥 𝑑1𝑦𝑖

𝑚𝑖𝑛  𝑑2𝑦𝑖  
                                         (6) 

where 𝑚𝑎𝑥  𝑑1𝑦𝑖 is the maximum value of the average 
values of distances within the same classes in the 

classification plan shown by particle 𝑦𝑖 . 𝑀𝑖𝑛  𝑑2𝑦𝑖   is the 

minimum value of the distances between classes in the 

classification plan shown by particle 𝑦𝑖 ,  𝑚𝑗 is class j and, 

𝑚𝑖 is class 𝑖. For clusters considering the Euclidean 
distance and WCSS, fitness was expressed in Eq. 7.  

          𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  
1

𝑊𝐶𝑆𝑆
= ∑ ∑ [

(𝑥1 − 𝜇𝑘)2

1
]

𝑥1∈𝑘

𝑘

𝑘=1

             (7) 

where k denotes the number of clusters, 𝑥1 denotes the 

data point, and 𝜇𝑘 denotes the centroid. The algorithm 
maximizes the fitness value by minimizing WCSS. 
Particles with higher fitness values were required. The 
algorithm adjusts the positions and velocities of the 
particles to explore the search space and find the best 
centroids that minimize the WCSS. 

2.3.3. Initialization of Personal Best  

Personal best (𝑝𝑏𝑒𝑠𝑡) refers to the best solution that 
an individual particle finds during the search process. 
The personal best fitness for each particle was set as the 
fitness value obtained from the initial fitness evaluation. 
The personal best represents the best set of cluster 
centroids that the particle identified for classifying the 
data. The personal best is used in the velocity update 
equation, which determines how each particle moves in 
the search space. 

2.3.4. Initialization of Global Best  

The global best (𝑔𝑏𝑒𝑠𝑡) is the best position found by 
any particle in the swarm during the optimization 
process. Initially, 𝑔𝑏𝑒𝑠𝑡 is set to the position of the 
particle with the best fitness value among the initial 

𝑝𝑏𝑒𝑠𝑡 values. The fitness of 𝑔𝑏𝑒𝑠𝑡 was then evaluated using 
the objective function, and it was updated as the 
algorithm was iterated. The global best served as a 
reference point for all the particles in the swarm. Each 
particle is influenced by both its personal best and global 
best when updating its position.  

The effect of the personal best and global best 
helped particles converge towards the optimal regions of 
the solution space. The global best corresponded to the 
set of cluster centroids that had produced the best 
clustering results at that time, meaning the most 
accurate separation of occupied and unoccupied 
spectrum bands, were achieved, leading to optimal 
spectrum sensing performance 

2.3.5. Position and Velocity Update 
The velocity update mechanism governs how 

particles in the swarm move through the solution space 
in search of the optimal cluster centroids for spectrum 
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sensing. Each particle represents a potential solution. 
The velocity was influenced by both the personal best 
position of the particle and the global best position 
found by the swarm. The velocity of a particle was 
updated using Eq. 8.  

 𝑣𝑖
𝑡 + 1   = 𝑤 𝑥 𝑣𝑖

𝑡   +  𝑟1  𝑥 𝑐1  𝑥  (𝑝𝑏𝑒𝑠𝑡  − 𝑥𝑖
𝑡)   

+  𝑐2  𝑥 𝑟2 𝑥 (𝑔𝑏𝑒𝑠𝑡  − 𝑥𝑖
𝑡)                         (8)  

where  𝑣𝑖
𝑡 + 1  denotes the velocity of particle i at 

iteration t + 1. 𝑣𝑖
𝑡   is the velocity of particle i at iteration 

t. w is the inertia weight, which controls the effect of 

the previous velocity on the current velocity; 𝑐1 and 𝑐2 
are the acceleration coefficients, controlling the 
influence of the personal best and global best elements; 
and 𝑟1and 𝑟2are random numbers that are distributed 
uniformly between 0 and 1. They introduced randomness 

into the movement of particles. 𝑝𝑏𝑒𝑠𝑡 refers to the 
personal best position of particle i and 𝑔𝑏𝑒𝑠𝑡 is the global 
best position of the particle found by the algorithm. 

Where, 𝑥𝑖𝑡 is the current position of particle i at 
iteration t. 

Once the velocities of the particles are updated, the 
positions of the particles are updated. The position of 
each particle was updated by adding the updated 
velocity to the current position. Eq. (9) was used to 
calculate the positions of the particles.  

                 𝑥𝑖
𝑡 + 1 =   𝑥𝑖

𝑡 + 𝑣𝑖
𝑡 + 1                                               (9) 

Where 𝑥𝑖
𝑡 + 1 is new position of the particle i. Each 

particle’s position represents a potential set of cluster 
centroids that define the boundaries between the 
occupied and unoccupied spectrum states. The velocity 
update mechanism allows particles to explore various 
configurations of these centroids, guided by their 
personal best and the swarm’s global best, leading to the 
optimal detection of spectrum holes or occupied bands. 

The velocity update mechanism in the PSO-K 
algorithm plays a critical role in guiding the swarm of 
particles towards the optimal solution. It balances the 
new solutions and the known good solutions, ensuring 
that the particles converge to an optimal set of cluster 
centroids for better spectrum sensing. This process is key 
to enhancing the accuracy and efficiency of spectrum 
detection, ultimately leading to improved spectrum 
utilization. 

2.3.6. Iteration 
Iteration refers to one complete cycle through the 

algorithm process, where the positions and velocities of 
all particles in the swarm are updated. The application 
of the PSO-K algorithm steps was repeated until 
convergence was achieved. During each iteration, the 
particles move through the solution space based on their 
current velocity, which is influenced by their personal 
best positions and the global best position found by the 
swarm. After all particles were initialized with positions, 

velocities, 𝑝𝑏𝑒𝑠𝑡, and 𝑔𝑏𝑒𝑠𝑡, the algorithm began the 
iterative process. The iteration counter was initially set 
to zero. The velocity of each particle was updated based 
on its current velocity, the difference between its 
current position and its personal best, and the difference 
between its current position and the global best. This 
step guides the particles toward better solutions by 
balancing exploration and exploitation in the search 
space. The iterative process involved updating the 
particles’ positions and velocities, adjusting their 𝑝𝑏𝑒𝑠𝑡, 

and potentially updating the 𝑔𝑏𝑒𝑠𝑡, all aimed at 
converging at an optimal convergence point. Once the 
velocities are updated, the particle positions (which 
correspond to the cluster centers) are also updated. This 
new position represents new potential clustering of data. 
The algorithm is iterated until convergence is achieved. 
During each iteration, the particle positions and 
velocities were updated, their fitness was evaluated, 
and the best solution found by the swarm was also 
updated.

Table 1: Simulation parameters 

S/N Parameters  Description Values  

1 Algorithm Algorithm type  PSO-K means Algorithm 
2 Swarm size Number of particles in PSO 1000 
3 Clusters Number of clusters in k-means  2 
4 Iterations Maximum number of PSO iterations 300 
5 Distance Metrics  Type of distance metric Euclidean 
6 Channel type Type of channel model AWGN 
7 Signal to Noise ratio range Signal to noise ratio 0-20dB 
8 Detection threshold Variable 01-09 
9 Frequency band Frequency range FR-1 frequency range 
10 Probability of detection Ideal value of detection probability 1 
11 Probability of false alarm Ideal value of false alarm probability 0 
12 Probability of missed detection Ideal value of missed detection probability 0 
13 AUC Area under the curve for ideal system 1 

 
2.3.7. Convergence 

Convergence is the point at which the algorithm's 
particles stop making significant improvements or 
changes in their positions, indicating that it is optimal. 
Convergence in the PSO-K Means algorithm occurred 
when the particles in the swarm found an optimal 
solution, and further iterations could not significantly 
improve the solution. Several criteria were used to 

determine convergence. Fitness Stabilization means that 
there is an improvement in fitness across successive 
iterations, which becomes negligible. This indicates that 
the particles had converged to a solution and were no 
longer making significant progress in finding a better 
solution. As the particles converged towards the global 
best, their velocities tended to decrease. The reduction 
in velocity across the swarm indicates that the particles 
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converged to a common solution and that the search 
space exploration was near completion. 

After convergence, the final positions of the 
centroids after iterations are used to classify the data 
points into clusters. Clustering was then performed on 
the set of frequency bands to group them into clusters 
based on their energy level similarities. The K-means 
algorithm clusters the particles into two groups based on 
their positions in the search space. Eq.10 was used. 

                    𝑑(𝑧𝑝, 𝑚𝑗) =  √∑(𝑍𝑝𝑘 − 𝑚𝑗𝑘2)

𝑛𝑑

𝑘=1

                  (10) 

where 𝑛𝑑 is the number of attributes, 𝑧𝑝 is the object, 

𝑍𝑝𝑘 is attribute k in object p, mj is class j, 𝑚𝑗𝑘 is 

attribute k in class j, and 𝑑(𝑧𝑝, 𝑚𝑗)  is the distance 

between object p and class j. Each class size was 

calculated using Eq. 11. where 𝑧𝑝is the object. 

𝑚𝑗 =  
1

𝑛𝑗

 ∑ 𝑍𝑝

𝑧𝑝∈𝑐𝑗

                                        (11) 

2.4. Spectrum Decision and Performance 

Measurement 

The final clustering result was then evaluated to 
make decision to determine the clusters that represent 
the occupied frequency bands and those that represent 
unoccupied frequency bands. After the convergence of 
the PSO-K Means algorithm and clustering, performance 
metrics were measured. These metrics typically include 
the probability of detection (Pd), probability of false 
alarms (Pf), and probability of missed detection (Pm). 
Cluster labelling was performed, where one cluster 
represented the occupied state and the other 
represented a vacant state. The algorithm labels these 
clusters based on centroid positions, where one cluster 
typically represents the presence of a PU (occupied 
spectrum) and the other represents the absence (vacant 
spectrum).  The independent variables were used to 
achieve resignation. Table 1 presents the key variables 
used in the simulation of the algorithm. 

 To evaluate the performance, the results from the 
algorithm were compared with a ground-truth dataset, 
which contained the actual states of the spectrum bands 
(whether they were occupied or vacant). This ground 
truth is essential for calculating the performance 
metrics. True Positives (TP) refer to the number of 
correctly detected occupied spectrum bands. False 
Positives (FP) refer to the number of incorrectly 
detected occupied spectrum bands (actually vacant). 
True Negatives (TN) refer to the number of correctly 
detected vacant spectrum bands. False Negatives (FN) 
refer to the number of missed detections where the 
spectrum is occupied, but the algorithm classifies it as 
vacant. These metrics were then used to measure the 
performance of the algorithm in terms of the probability 
of detection, probability of false alarms, probability of 
missed detection, and detection accuracy. The 
probability of detection is also known as the True 

Positive Rate (𝑇𝑃𝑅) or the sensitivity, calculated using 
Eq. 12.  

                            𝑃𝑑 =  
𝑇𝑃 

𝑇𝑃 +  𝐹𝑁
                                         (12) 

The probability of a false alarm is also known as 
specificity (false positive rate). Mathematically, this is 
represented by Eq. 13 which represents the ratio of 
falsely detected occupied bands to all truly vacant 
bands. 

                                    𝑃𝑓 =  
𝐹𝑃

𝐹𝑃 +  𝑇𝑁
                            (13) 

The probability of missed detection values were 
calculated using Eq.  14. 

                               𝑃𝑚 =  
𝐹𝑁

𝑇𝑃 +  𝐹𝑁
                                    (14) 

Probability of missed detection can also be given as      

𝑃𝑚 =  1 − 𝑃𝑑. 

 
Fig. 2: Detection probability vs threshold 

3. RESULTS AND DISCUSSION 

Clustering was performed, and performance metrics 
were measured to analyze the performance of the 
algorithm. The probability of detection is a performance 
metric used to measure the performance of PSO-K means 
to reduce inter-user interference. 

3.1. Probability of Detection  

Fig. 2 shows a graph of Pd against the detection 
threshold. Increasing the detection threshold lowers Pd, 
and vice versa. A lower detection threshold makes the 
system more sensitive, meaning that it is more likely to 
detect even weak signals from the PU. A higher threshold 
makes the system less sensitive, making it possible to 
miss weaker signals from the PU and leading to a lower 
detection probability. It is usually very important to 
maintain the detection threshold at a value that gives a 
higher Pd; in this study, the detection threshold is at a 
value that gives a high Pd to allow accurate sensing while 
minimizing interference between users.
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Fig. 3: Receiver operating characteristics curve for PSO-K 

 

3.2. Receiver Operating Characteristic Curve 

Several previous studies (Aloqlah, 2014; Musuvathi et 
al., 2024) suggested that the detection probability, 
which is also known as the true positive rate, shows the 
likelihood of CR correctly detecting the presence of a PU 
in the spectrum. The PSO-K means algorithm achieved a 
high detection probability. In Fig. 3, the receiver 
operating characteristic curves show the true positive 
rate on the x-axis and the false positive rate on the y-
axis. It is clear that Pd has a value of 0.93 or 93%, which 
shows that the proposed technique detects the presence 

of PU by 93% and indicates a robust spectrum sensing 
capability. This is an improvement over traditional 
energy detection, which typically yields a Pd value of 
approximately 0.7. An ideal ROC curve for spectrum 
sensing has an AUC of 1 or 100%. In previous studies, the 
typical values for Pd range between 0.7 and 0.9. The 
improvement of 0.93 in this study suggests that the 
proposed method is more effective in detecting PU 
signals. 

 

 
Fig. 4: Graph of detection probability vs SNR 

 
ROC curve representation was used to evaluate the 

performance of the detection system. This shows the 
trade-off between the system's sensitivity and its 
specificity (false positive rate) with varying detection 
thresholds. The TPR or Pd is the proportion of actual 
positives (presence of a signal) correctly identified by 
the system. Normally, it is plotted on the y-axis of the 
ROC curve. The Pf also known as Specificity, is the 
proportion of actual negatives (absence of a signal) 
incorrectly identified as positive by the system. It is 
plotted on the x-axis of the ROC curve. 

Noisy environments affect spectrum sensing. The 
signal-to-noise ratio (SNR) is a vital metric in 
communication networks. An evaluation of the channel 
quality is provided. When properly implemented, 
spectrum sensing can reliably provide accurate results. 
Noise, as well as the effects of fading and shadowing on 
the channel in question, make this practically 
impossible. A considerable detection probability was 
achieved across various SNR levels using the PSO-K means 
approach. Figure 4 shows the correlation between the 
signal-to-noise ratio and the detection chance. Gains in 
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the signal-to-noise ratio are directly proportional to the 
increase in the detection probability. From 0 dB to 5 dB, 
the detection probability (shown in Fig. 4) is very low; 
nevertheless, it increases exponentially from 5 dB to 20 
dB, as shown in Fig. 4. This trend demonstrates that PSO-
K indicates the algorithm's sensitivity to signal quality, 
exhibiting the best performance in settings with an 
elevated SNR. The suboptimal detection performance in 
a low-SNR channel indicates that this approach is 
adversely influenced by the channel conditions, 
preventing the SUs from capitalizing on all available 
transmission chances. 

 This high Pd minimized the risk of interference 
between the secondary and the PU. In a 5G CR network, 
the SU seldom interferes with the primary network, 
leading to better performance. This suggests that the 
algorithm can effectively identify spectrum holes, 
thereby allowing for the optimal use of the available 
spectrum. 

3.3. Probability of False Alarm 

Table 2 shows the trade-off between the 
probabilities of detection and false alarm. There is a 
relationship between the probability of detection, 
probability of false alarms, and threshold. When the 
detection threshold was adjusted from 0.2 to 0.5, there 
was a noticeable decrease in the false alarm rate from 
0.79 to 0.5, at the expense of a slight reduction in the 
detection probability. This trade-off highlights the 

importance of carefully tuning the detection threshold 
to balance detection accuracy and false alarms.     

As shown in Table 2, lowering the threshold lowers 
the probability of detection and the probability of false 
alarm, whereas increasing the threshold increases the 
probability of detection and the probability of false 
alarm. 

Table 2: Probability of detection, false alarm rate and detection of 
threshold 

Threshold Pd Pf 

0.1 0.93 0.88 
0.2 0.81 0.79 
0.3 0.73 0.69 
0.4 0.64 0.61 
0.5 0.56 0.50 
0.6 0.47 0.42 
0.7 0.34 0.29 
0.8 0.18 0.21 
0.9 0.08 0.10 

A lower detection threshold makes the detector very 
sensitive, implying that even small signals are detected. 
However, this increases the likelihood of false alarms 
when the noise is mistaken for a signal. This leads to a 
higher probability of false alarms. However, a higher 
threshold reduces the sensitivity of the detector, which 
implies that only stronger signals are detected. This 
reduction in the probability of false alarms is critical, as 
it minimizes unnecessary spectrum sensing interference 
and improves the overall efficiency of spectrum 
utilization. 

 
Fig. 5: Graph of False alarms probability vs SNR 

 

3.4. Signal to Noise Ratio  

Fig. 5 is a graph of signal to noise ratio versus false 
alarm probability. It illustrates that the chance of a false 
alarm is elevated at low signal-to-noise ratio (SNR) 
values and diminished at higher SNR values. Between SNR 
0.0 and 2.5, the Pf is higher, but the vale starts to 
decrease at snr 5 Db. At high signal-to-noise ratio, the 
PSO-K algorithm accurately identifies the presence of a 
principal user. The performance of the spectrum-sensing 
algorithm is evaluated at different SNR levels. The ML-
based approach maintained a high Pd value across a wide 
range of SNRs, demonstrating better resilience in noisy 
environments. According to the literature, traditional 

methods often struggle at low SNRs, with significant 
reductions in Pd. The improved performance at low SNRs 
in this study indicates that the ML approach is more 
effective in challenging environments, making it suitable 
for real-world applications in 5G networks. 

3.5. Probability of Missed Detection 

Missed detection is a barrier to spectrum sensing 
because it allows the SU to interfere with the primary 
signal. Fig. 6 illustrates that the chance of missed 
detection is elevated at low SNR values; however, as 
the SNR value increases, the Pm decreases. Generally, 
the value of PM decreases as the SNR value increases. 
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A plot of the probability of missed detection versus 
threshold is presented in Fig. 7. It is seen that raising the 
detection threshold increases the probability of missed 
detection, whereas lowering it decreases the probability 
of missed detection. Lowering the detection threshold 
increases the sensitivity of the system to detect weak 
signals and leads to a reduction in the probability of 
missed detection, because the system is more likely to 
detect signals that are weak or close to the noise level, 

which in turn reduces the probability of missed 
detection. Conversely, a higher detection threshold 
decreases detector sensitivity, meaning that only 
stronger signals are detected. This increases the 
probability of missed detection because the system is 
less likely to detect weaker signals. In this study, the 
detection probability is high and ensures that the 
probability of missed detection is kept low. 

 
Fig. 6: Probability of Missed detection vs SNR 

 
Traditional methods have a higher probability of missed 
detection, particularly for low SNRs. The improved 
performance at low SNRs in this study indicates that the 
ML approach is more effective in challenging 
environments, making it more suitable for real-world 
applications in 5G networks. In 5G CR networks, the 
proposed algorithm will ensure interference with PUs is 
highly minimized. The proposed technique achieved a 
probability of missed detection of 0.08, indicating an 
improvement over traditional methods, where the 
probability of missed detection typically gives a value of 
0.2. This lower probability of missed detection indicates 
that the ML-based approach is more reliable for 
identifying spectrum occupancy, which is crucial for 
avoiding harmful interference with PUs in 5G CR 
networks. 

3.6. Sensing accuracy 

Sensing accuracy in CR networks refers to the ability 
of a CR system to correctly detect the presence or 
absence of a PU in a spectrum band. Accurate spectrum 
sensing is very important in CRNs because it directly 
affects the efficiency of the network, reduction of 
interference between the primary and SU, and overall 
utilization of the available spectrum. To compare the 
performance of the proposed detectors, we evaluated 
the detection accuracies of the different detectors in a 
5G CR network environment. 

Sensing accuracy is important for the following 
reasons. Firstly, it protects the PU. One of the main aims 
of the CR network is to ensure that SUs do not interfere 
with PUs. High sensing accuracy helps protect PUs by 
reliably detecting their presence and vacating the 
spectrum when PUs want to transmit. Second, it 
increases the efficiency of the spectrum utilization. 
Accurate spectrum sensing allows for better utilization 
of the spectrum by SUs.  

Table 3: Accuracy comparison table 

Algorithm Detection accuracy 

Logistic Regression 0.85 
Random Forest 0.86 
Energy Detection 0.55 
PSO-K means 0.94 

The key components of sensing accuracy involve the 
performance metrics for spectrum sensing, that is, the 
probability of detection, probability of false alarm, 
probability of missed detection, and receiver operating 
characteristic curve, which provides a graphical 
representation of the sensing accuracy. The roc curve 
also summarizes the overall sensing accuracy, where an 
AUC of 1 indicates perfect sensing accuracy. When 
spectrum vacancies are accurately detected, SUs can 
opportunistically access them without causing 
interference to the PU, thereby improving the overall 
spectrum efficiency. Finally, the accuracy improves 
network performance. In a 5G CR environment, where 
the demand for spectrum is high and the available 
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spectrum is limited, accurate sensing is crucial for 
maintaining the network performance. It ensures that 
SUs can access the spectrum only when it is available. 

Kumar (2018) analyzed spectrum sensing using an 
energy detection method. Also, in Atapattu et al. (2010), 
it was analyzed in area under the receiver operating 
curve. From their analysis we see that the accuracy 
values for energy detection method was 0.5, or 50%. The 
authors performed a comprehensive analysis of the 
performance of the logic regression algorithm in 
spectrum sensing based on the detection accuracy. It 
was observed that the logic regression gave a detection 
accuracy of 0.85 or 85% when the analysis was performed 
on 5G CR networks. In a recent work Gao & Wang (2021), 
a spectrum-sensing algorithm was proposed, based on 
random forest. The performance of the algorithm was 
analyzed, and the energy levels of the received signals 
were used as features. In their study, the detection rate 
was found to be 0.86, which was 86%.  

In this study, the PSO-K algorithm produced high 
detection accuracy values. The detection accuracy when   
measuring true negatives and false positives gives the 
PSO-K means algorithm an accuracy of 0.94, or 94%.  
These results show an improvement of 9.3% in the 
detection accuracy. This implies that the application of 
the PSO-K means algorithm in spectrum sensing in 5G CR 
networks will lead to reduced interference on primary 

and secondary user in the CR network, as well as enhance 
network performance and improve spectrum utilization 
in CR networks. Table 3 shows a comparison between 
PSO-K-means and other methods of spectrum sensing. 
The PSO-K means algorithm demonstrated higher 
accuracy and better performance than the other 
spectrum detection methods. Table 3 presents the 
results. 

3.7. Implications for 5G Cognitive Radio 

Networks 

The results obtained from the proposed ML-based 
spectrum sensing algorithm show clear improvements 
over traditional methods in several key performance 
metrics, including the detection probability, false alarm 
rate, and missed detection probability. The ROC curve 
and AUC further confirmed the superiority of the 
proposed method in accurately detecting PU signals 
while minimizing interference in 5G CR networks. These 
improvements are crucial for enhancing spectrum 
efficiency and reducing interference, making the 
proposed approach highly suitable for deployment in 5G 
networks. The enhanced spectrum sensing technique 
provided by the PSO-K means algorithm contributes to a 
more efficient spectrum utilization and reduced 
interference in 5G CR networks. This could lead to more 
reliable communication and better service quality in 
places where spectrum resources are heavily contested.

 
Fig. 7: Probability of Missed detection vs threshold 

 
4. Conclusion 

This study introduces a hybrid method that combines 
particle swarm optimization with the k-means clustering 
algorithm to enhance the spectrum sensing accuracy in 
CR networks and mitigate interference between the 
primary and SUs. This methodology, which integrates the 
characteristics of the PSO and K-means algorithms, 
demonstrates a robust and efficient solution for 
spectrum sensing in CR networks, ensuring accurate 
detection performance and maximizing spectrum use. 
The principal aim of this research was to devise and 
assess an ML-based methodology to enhance spectrum 
sensing in 5G CR networks, concentrating on minimizing 
interference and augmenting the 5G spectrum usage. 
The incorporation of the PSO-K Means algorithm 

significantly enhances the detection probability while 
decreasing both the false alarm and missed detection 
probabilities compared with conventional energy 
detection methods. Analysis of the detection accuracy of 
the PSO-K means revealed an enhancement of 9.3% in 
accuracy. The findings indicate that utilizing ML 
techniques, specifically the PSO-K Means algorithm, can 
improve the spectrum utilization efficiency in 5G CR 
networks. This may result in enhanced communication 
reliability, diminished interference, and augmented 
network capacity, thereby rendering the proposed 
technology a viable solution for next-generation wireless 
networks. This study enhances the existing knowledge on 
CR networks by presenting an optimal ML strategy that 
addresses the issues associated with dynamic spectrum 
availability. The proposed technique improves detection 
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accuracy and provides a scalable solution for real-time 
spectrum sensing in 5G scenarios. 
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