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ABSTRACT 
 

  

ARTICLE INFO 

This paper presents a comprehensive performance evaluation of optimized IEEE 802.11ax 
networks in Industrial Internet of Things (IIoT) environments focusing on three critical 
performance metrics: throughput, latency, and packet loss. Using a Deep Reinforcement 
Learning (DRL)-based optimization strategy, the researchers configured MAC layer 
parameters to meet the demands of heterogeneous industrial traffic demands. 
Justification for the use of DRL is provided by its ability to handle complex, stochastic 
environments effectively.  MATLAB simulations modelled and analyzed network 
performance under harsh IIoT environments, characterized by electromagnetic 
interference (EMI), fluctuating traffic loads, high-density device deployments, and 
significant physical obstructions such as metal structures. The results showed that the 
optimized network significantly improved system throughput, average transmission 
delay, and packet retransmission rate. The peak throughput increased from 1420 Mbps to 
2150 Mbps, and the highest packet loss ratio decreased from 32.5% to 23%. Latency also 
saw notable improvement, with the number of nodes experiencing latency greater than 
0.1 seconds decreased from 5 to 1. These findings demonstrated that the proposed 
optimization strategy for IEEE 802.11ax systems can significantly enhance performance 
in IIoT environments, making them more reliable and efficient for industrial applications. 
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1. Introduction   

Industrial Internet of Things (IIoT) is a transformative 
technological concept that integrates traditional 
industrial systems with advanced technologies such as 
sensors, cloud computing, and data analytics to create a 
more efficient and interconnected industrial ecosystem. 
As a result, IIoT has the potential to revolutionize various 
industries such as manufacturing, energy, healthcare, 
and transportation by enabling real-time monitoring, 
automation, and predictive maintenance (Arnold et al., 
2022). According to a study by Jain et al. (2021), IIoT can 
improve overall equipment effectiveness, reduce 
downtime, optimize asset utilization, and enhance 
supply chain management in manufacturing industries. 
IIoT also plays a crucial role in the energy sector by 
facilitating the deployment of smart grids, demand 
response systems, and energy management solutions. A 
study conducted by Pedro (2021) demonstrates that IIoT-
based applications provide real-time visibility into 
energy usage patterns, enable energy conservation, and 
support the integration of renewable energy sources. 
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These findings underscore the importance of IIoT in 
creating a more sustainable and efficient energy 
infrastructure. 

The success of IIoT heavily relies on robust and 
efficient communication protocols to facilitate seamless 
data transfer and real-time decision-making (Goudarzi et 
al., 2021). Introduced to overcome the limitations of its 
predecessor, IEEE 802.11ax protocol was designed to 
provide higher data rates, increased capacity, and 
improved performance (Wilhelmi et al., 2021), making it 
particularly relevant for IIOT applications where a 
multitude of devices coexist in a dynamic and 
challenging environment. 

IEEE 802.11ax, also known as Wi-Fi 6, is a wireless 
communication standard with improved performance 
and efficiency. It builds upon the features of its 
predecessor, IEEE 802.11ac (Wi-Fi 5), and introduces 
enhancements to address the growing demands of 
modern wireless communication.  
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The origins of 802.11 date back to the 1980s when 
the Federal Communications Commission (FCC) opened 
up the Industrial, Scientific and Medical (ISM) radio 
bands for commercial applications (Pahlavan & 
Krishnamurthy, 2021). This led to early research in the 
1990s on wireless local area networks (WLANs) 
technologies by companies and academic institutions. In 
1997, the first 802.11 standard was ratified by the 
Institute of Electrical and Electronics Engineers (IEEE) 
which defined 1 Mbps and 2 Mbps data rates based on 
frequency hopping or direct sequence spread spectrum 
in the 2.4GHz ISM band. 802.11a operated in the 5GHz 
band for reduced interference providing up to 54 Mbps 
speeds using OFDM (Pahlavan & Krishnamurthy, 2021) 

Over the 2000s, further amendments to 802.11 were 
developed and ratified to enhance the capabilities of 
WiFi. 802.11b achieved speeds up to 11 Mbps by 
introducing CCK modulation. Then high throughput 
802.11n with features like MIMO and wider bandwidth 
brought significant performance gains hitting 600 Mbps 
(Gast, 2012). This rapid evolution continued into the 
2010s with 'VHT' 802.11ac reaching up to 6.9 Gbps speeds 
through 256-QAM, 8 spatial streams and 160 MHz 
channels. Most recently, 802.11ax or Wi-Fi 6 focuses on 
improving efficiency, density support and latency rather 
than peak data rates (Khorov et al., 2020). 

2. Materials and Methods 

2.1. Research Design 

The design incorporated several key stages, 
including the selection of appropriate simulation tools, 
IIoT environment modeling, parameter initialization, and 
optimization of network variables using DRL. The 
network was then analyzed for performance in both 
‘unoptimized’ state and optimized state focusing on 
throughput, latency and packet loss. Fig. 1 is a flow chart 
giving a summary of the Research Design. 

 
Fig. 1: Research Design Flow Chart 

It is important to note that simulated environments 
do not fully replicate real-world industrial settings. 
However, they provide valuable insights into network 
behavior under controlled conditions and allow for 
performance comparisons between optimized and 
unoptimized states. (Lee et al., 2023) 

2.2. Software selection 

MATLAB 2024a was selected for this project due to 
its versatility in handling various aspects, including 
simulation, optimization, and deep reinforcement 
learning. Its matrix-based language provided an intuitive 
way to express mathematical computations, while built-
in graphics capabilities enabled easy visualization and 
extraction of insights from data 

The WLAN Toolbox™ and Communications Toolbox™ 
were crucial components of the simulation setup. The 
toolboxes offered functions for designing, simulating, 
analyzing, and testing WLAN communication systems. To 
enhance the deep learning capabilities, Python libraries 
were integrated into MATLAB. This integration allowed 
the project to harness Python's libraries, providing 
access to advanced model architectures, optimizers, and 
pre-trained models without rebuilding them from scratch 
in MATLAB.  

2.3. IIoT Environment Modelling in Matlab 

software 

A key focus of this research is performance 
optimization in harsh factory environments. The term 
harsh in this context refers to an IIoT environment 
characterized by: 

High levels of electromagnetic interference (EMI) from 
industrial machinery, which disrupts wireless 
communication. 
Dense network deployments leading to channel 
congestion and increased packet collisions. 
Physical obstructions, such as metal enclosures and 
factory equipment, causing severe signal attenuation. 
Fluctuating traffic loads, requiring dynamic adaptation 
of network parameters. 
Environmental challenges, including temperature 
variations and dust interference, impacting device 
performance (Jasperneite et al., 2020). 

Given these challenges, optimizing IEEE 802.11ax 
performance in such conditions is crucial to ensuring 
reliable, low-latency, and high-throughput 
communication in IIoT applications. To mimic IIoT 
environment in MATLAB, various tools and features 
provided by MATLAB and its toolboxes were utilized. 

Interference was modeled using stochastic processes 
to simulate real-world industrial environments by Eq. 1. 

        𝐼(𝑡) = ∑ 𝑝𝑘
𝑖 . 𝑒𝑗2𝜋𝑓𝑘𝑡                                 (1)

𝑁𝐼

𝑘=1
                                         

Where 𝐼(𝑡) is the interference signal, 𝑃𝑘 is the power 

of the 𝑘𝑡ℎ interfering signal, and 𝑁𝐼 NI is the number of 
interfering signals.  
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Wall models were incorporated into simulation 
environment to account for signal attenuation, 
reflections, and interference caused by the walls. 
Different properties of walls, such as material, 
thickness, and positions, were defined using the 
appropriate functions and objects in the toolbox. A 
system with 81 nodes was created, where the first 27 
nodes represented Access Points (APs) and the 
remaining 54 nodes represented Stations (STAs). 
MATLAB's built-in data structures (e.g., structs or 
classes) was used to define the properties and 
behaviors of each node, such as transmit power, 
receiver sensitivity, and communication protocols. 
The provided helper function hGetIDsAndPositions was 
used to obtain the IDs and random positions for the APs 
a/nd STAs within each room. The node IDs, AP 
positions, and STA positions were stored in MATLAB 
variables or data structures for later use in the 
simulation.5 STAs in each room were Associated to the 
corresponding AP by using the associateStations object 
function of the wlanNode object. APs then configured 
with continuous application traffic to their associated 
STAs using the FullBufferTraffic argument. 

Fading channel models were applied to the 
wireless links between the Aps and STAs, taking into 
account factors like distance, obstacles, and 
interference. The simulation considered both Rayleigh 
and Rician fading models to reflect varying IIoT 
conditions. The Rayleigh model was applied to non-
line-of-sight (NLOS) transmissions, while Rician fading 
was used for line-of-sight (LOS) scenarios, ensuring 
realistic channel behavior representation. 

The mathematical representation of the fading 
channel is given in Eq. 2. Where hLOS and hNLOS are 
the line-of-sight and non-line-of-sight components, 
respectively. 

             ℎ(𝑡) = √½(ℎ𝐿𝑂𝑆 + ℎ𝑁𝐿𝑂𝑆)                                  (2) 

The line-of-sight component hLOS accounts for the 
direct signal path between the transmitter and 
receiver, while the non-line-of-sight component hNLOS 
includes reflected, scattered, and diffracted signals 
caused by obstacles. The Rayleigh fading model 
assumes no line-of-sight path, while the Rician fading 
model incorporates both line-of-sight and scattered 
paths, with the Rician K-factor indicating the ratio of 
power in the direct path to the power in the scattered 
paths. (Ciezobka et al., 2023). 

DRL was selected for this study due to its superior 
ability to optimize decision-making in stochastic 
environments where conventional static models fail. 
Unlike heuristic approaches, DRL continuously learns 
and adapts to variations in industrial network 
conditions, optimizing contention window sizes, 
transmission power, and frame aggregation 
dynamically. Its suitability is validated through 
extensive literature, such as (Goudarzi et al., 2023) 
which demonstrated its effectiveness in wireless time-
sensitive networking. 

2.4. Initialization of Optimisation Parameters 

The selection of parameters for the simulation, such 
as the simulation time, modulation and coding scheme 
(MCS), and transmission power was based on IEEE 802.11 
ax standard. Simulation time was set at 12 seconds. 
Short simulation times can be useful for quickly 
evaluating the system's performance, testing different 
configurations, or analyzing transient behaviors. The 
wlanDeviceConfig function in MATLAB's Wireless 
Communications Toolbox was used to configure the 
properties of wireless devices in a WLAN simulation. Two 
configuration objects were created: one for Access 
Points (APs) and another for Stations (STAs). 

2.5. Network Training 

The network training process for DRL model was a 
crucial step in optimizing the IEEE 802.11ax network's 
performance. The primary objective of this training was 
to enable the network to learn from data and adjust the 
protocol parameters dynamically to meet the application 
requirements. In order to define the optimization 
problem, an objective function which represents key 
performance indicators such as throughput, latency, or 
packet retransmission rate was denoted as 𝐽(𝜃) (Eq. 3) 

where 𝜃 represents the parameters to be optimized (that 
is contention window size, transmission power, frame 
aggregation). The goal was to minimize the delay 𝐷 or 

maximize the throughput 𝑇; therefore, the objective 
function was expressed as shown in Eq. 3. 

𝐽(𝜃) = 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒[𝑇(𝜃) − 𝛼𝐷(𝜃)]                                   (3)   

Where 𝛼 is a weighting factor balancing throughput and 
delay. The inclusion of delay subtraction from 
throughput is derived from weighted optimization 
principles, ensuring latency-sensitive traffic is 
prioritized. 

During the training process, forward propagation is 
performed, where the input data was passed through the 
neural network to obtain the expected value of the loss 
function. The loss function is designed to capture the 
performance metrics of interest, such as system 
throughput, delay, and packet retransmission rate. By 
incorporating these metrics, the network could learn to 
optimize the protocol parameters to improve the overall 
network performance. 

After obtaining the expected value of the loss 
function, the error terms for the output and hidden 
layers were calculated. These error terms quantify the 
difference between the network's predictions and the 
desired outputs. Subsequently, the gradient values of 
the loss function with respect to the connection weights 
and bias terms were determined using backpropagation 
techniques. 

3. Results  

3.1. Baseline Performance of Unoptimized 

802.11ax Network 

3.1.1. Throughput 
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In the "Throughput at Each node" plot, Fig. 2, the x-
axis represented the nodes and the y-axis represented 
the throughput in Mbps. It was observed that throughput 
varied significantly across different APs, with some APs 
achieving high throughput (e.g., AP7 at 1420 Mbps) while 
others had zero throughput (e.g., AP3, AP23, AP25). This 
variability highlights the challenges in ensuring 
consistent performance across the network, likely due to 
factors such as interference, node placement, and 
traffic load. 

Mean (594Mbps): This represents the average of all 
values. It's lower than the expected value because of 
the presence of several low values, including three 
zeros. 
Mode (180Mbps): This indicates the most common 
value in the dataset. This represents a common 
baseline in throughput measurement. 

Median (630Mbps): This was the middle value when the 
data was sorted. It was higher than the mean, which 
suggests that the distribution was slightly skewed 
towards lower values. 

The difference between the mean and median 
(median being higher) indicates that the distribution was 
not symmetrical, but rather skewed to the left 
(negatively skewed). This is further supported by the 
presence of a few high values (like 1350 and 1420) which 
pulled the mean up, but not as much as the low values 
pulled it down. The mode being much lower than both 
the mean and median suggests that while 1.8 is the most 
common value, there are many higher values that 
influence the overall distribution. This kind of 
distribution indicated that throughput measurement had 
a common low value, but also the potential for 
significantly higher readings in some cases.

 
Fig. 2: Throughput, packet loss ratio and latency in unoptimised network. 

 
3.1.2. Packet Loss 

In the "Packet Loss at Each Node" plot, Fig. 2, the x-
axis represents the nodes, and the y-axis represents the 
packet loss ratio. The data reveals significant insights 
into the network's performance and areas needing 
improvement. The following basic statistics were 
observed: 

2 nodes (8.3%) had very high packet loss (>30%): 32.5% 
each. 
1 node (4.2%) had high packet loss (20-30%): 23%. 
2 nodes (8.3%) had moderate packet loss (10-20%): 
16.5% and 12.5%. 
5 nodes (20.8%) had low packet loss (<10%): 9%, 9%, 
6%, 6%, and 2%. 
Mean packet loss: 6.23%. 
Median packet loss: 0%. 

Nodes AP8 and AP20 exhibit a high packet loss of 
32.5%, indicating severe issues and could lead to 
underperformance in the network. Additionally, nodes 
like AP3, AP23, and AP25 showed zero packet loss but 

also zero throughput, indicating no active data 
transmission. 

There was a cluster of higher packet loss nodes at 
the beginning of the list, suggesting that certain areas or 
types of nodes might be more prone to packet loss. While 
more than half of the nodes performed optimally with no 
packet loss, the presence of nodes with high packet loss 
percentages indicates significant room for improvement 
in network reliability. Nodes with zero packet loss (AP1, 
AP2, AP6, AP7, AP11, AP13, AP14, AP15, AP16, AP17, and 
AP22) suggest good network performance. 

3.1.3. Latency 
STA3, STA23, STA25, STA30, STA50, and STA52 

showed zero latency. These STAs were associated with 
AP3, AP23, and AP25. Zero latency in this context 
indicated no active data transmission, hence no 
measurable delay. Five nodes experienced latency 
greater than 0.1 seconds. High latency indicates delays 
in data transmission, which negatively impacted network 
performance. 
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3.2. Performance of Optimised 802.11ax 

Network 

3.2.1. Throughput 
The mean increased significantly from 595Mbps to 

829Mbps, indicating a general improvement in 
performance. This suggests that the optimization raised 
the overall average throughput by 39%. 

Mode: The mode shifted from 180Mbps to 960Mbps, 
which was a substantial improvement. This indicates 
that the most common performance level has 
increased dramatically, suggesting more consistent 
higher throughput performance. 

Median: The median increased from 630 to 710. This 
shows that the middle value of the dataset has 
improved, indicating a general upward shift in 
throughput across the board. 

Range and Distribution:  The range has expanded, with 
both the minimum and maximum values increasing. 
The elimination of zero values suggests that all nodes 
are actively participating in data transmission, 
indicating a more stable and optimized network. The 
improved balance across the network demonstrates 
better load distribution, reducing bottlenecks and 
enhancing overall system efficiency. 

The optimized state still shows significant 
variability, but with a higher baseline. The spread of 
values is more even in the optimized state, without the 
cluster of very low values seen in the ‘unoptimized’ 
state. The optimized state showed improvements across 
all key metrics (mean, mode, median). The lowest 
performances were elevated (120Mbps vs 0), suggesting 
that underperforming nodes were improved. The highest 
performance was increased (2150Mbps vs 1420Mbps), 
indicating that the optimization also raised the peak 
capabilities. The optimized state appeared to have more 
consistent performance, with fewer extreme low values 
and a higher mode. This suggests that the optimization 

not only improved performance but also made it more 
reliable across different nodes or conditions. The 
optimization process has positively impacted overall 
network performance. Notably, no nodes exhibited zero 
throughput. This indicates that all nodes actively 
participated in data transmission, highlighting the 
efficiency and effectiveness of the network. 

The optimization was successful in improving overall 
performance, raising the baseline performance, 
increasing peak performance, and creating more 
consistent results across the system. The elimination of 
zero values and the significant increase in the mode 
suggest that previously underperforming elements have 
been substantially improved. The optimization resulted 
in a more balanced and slightly better-performing 
network overall, with significant improvements in the 
worst-case scenarios.  

3.2.2. Packet loss 
The highest packet loss was reduced by 29.2%, 

indicating improvement in the worst-performing nodes. 
The overall average packet loss was decreased by 19.7%, 
showing a general improvement in network 
performance. While the median was slightly increased, 
this was due to a more even distribution of packet loss 
across nodes. The packet loss was more evenly 
distributed in the optimized state, avoiding extreme 
values seen in the ‘unoptimized’ state. 

3.2.3. Packet Latency  
Latency in optimized IEEE 802.11ax was plotted as 

shown in Fig. 3. Unlike in ‘unoptimized’ network where 
five nodes experienced latency greater than 0.1 seconds, 
in Optimized network only one node experienced latency 
greater than 0.1 seconds. The overall latency across the 
network decreased significantly. This improvement 
indicates more efficient data transmission and better 
handling of network traffic.

 
Fig. 3: Throughput, packet loss ratio and latency in optimized network. 
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4. Discussion 

The IEEE 802.11ax standard specifies a maximum 
theoretical data rate of 9.6 Gbps for 8 spatial streams 
and 2.5 Gbps for 2 spatial streams (Khorov, Kiryanov, & 
Krotov, 2019).  

The highest throughput achieved in this study was 
2150 Mbps (2.15 Gbps) by AP2. This was higher than the 
maximum achievable theoretical throughput for IEEE 
802.11b, IEEE 802.11a, IEEE 802.11g, and IEEE 802.11n. 
While the observed throughput is lower than the 
theoretical maximum in IEEE 802.11ax and IEEE 
802.11ac, it's important to note that the theoretical 
maximum is rarely achieved in practical scenarios due to 
various overheads and real-world limitations. According 
to Bellalta & Kosek-Szott, (2019) actual throughput in 
Wi-Fi networks typically ranges from 50-70% of the 
theoretical maximum due to protocol overheads, 
channel conditions, and inter-user interference. 
Maximum achieved throughput in this study was 2.15 
Gbps, representing approximately 86% of the theoretical 
maximum, which aligns with expectations for real-world 
deployments, especially considering the complex IIoT 
environment simulated. 

Ali et al. (2018) reported achievable throughputs of 
up to 1.9 Gbps in their experimental study of 802.11ax 
and 802.11ac in industrial environments which 2.15Gbps 
results in this study surpass, indicating successful 
optimization. 

IEEE 802.11ax targets low latency, typically under 
10ms for less dense network applications (Qu et al., 
2019). Optimized network in this study, most nodes 
showed latency below 0.1 seconds (100ms), with only 
one node exceeding this threshold. While not achieving 
the ideal sub-10ms latency across all nodes, this 
represents a significant improvement from the 
‘unoptimized’ network. The latency performance 
aligned well with the observations of Saha & Dhillon, 
(2019), who reported latencies between 20-250ms in 
their study of 802.11ax in dense IoT scenarios. The 
majority of nodes meeting low latency requirements 
indicates a successful optimization in line with the 
standard's goals and practical expectations for IIoT 
environments. 

For most wireless applications, a packet loss rate 
below 1% is considered good, while anything above 2-3% 
may start to impact performance noticeably (Jain et al., 
2021). In this optimized network, the highest packet loss 
ratio was 23%. According to Khorov, Kiryanov et al. 
(2019), Wi-Fi 6 targets a packet error rate (PER) of less 
than 1% for most applications. The maximum packet loss 
in optimized network (23%) was slightly higher than the 
Wi-Fi 6 target. However, it's worth noting that Wi-Fi 6 
performance can vary greatly depending on 
environmental factors and network congestion. In 
Bellalta & Kosek-Szott (2019), researchers suggested 
that in real-world scenarios, packet loss rates for Wi-Fi 
networks can range from 1% to 20% depending on the 
environment and network load. 
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