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ABSTRACT 
 

  

ARTICLE INFO 

Energy access is a significant challenge globally due to limited access to electricity 
together with the unreliability of grid extension. The main backup system is often diesel 
generators which suffer from high maintenance, running costs and harmful emissions. 
The abundance of solar irradiation in the equatorial region and biomass due to the high 
population and agricultural activities provides a green energy solution to improve access 
to electricity through distributed generation. This study presents a design and analysis of 
a sustainable, and optimal configuration of a hybrid power system based Solar PV-Biomass 
energy system. The proposed system was designed and optimized using Hybrid 
Optimization of Multiple Energy Resources with the most optimal system being solar PV, 
Biomass Generator, and Diesel generator with storage. A sensitivity analysis using 
inflation rate and solar irradiation established that with increasing solar irradiation and 
reducing inflation rate, the Least Cost of Energy decreases. A sustainability analysis based 
on Multi-Criteria Decision-Making techniques showed that the most sustainable energy 
alternatives was solar PV, Biomass Generator with storage of specifications 360 kW of 
solar PV array, 540 kW of Biomass Generator, 142 kW converter and 576 strings of 1 kW 
lead-acid batteries storage bank with least cost of energy of 0.1026 USD/kWh. If this 
proposed hybrid energy system is implemented, it will improve energy access, reliability 
and reduce costs of energy compared to conventional grid extension 
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1. Introduction   

The growing world population and industrialization 
have resulted in an increasing demand for clean and 
quality energy (Nowotny et al., 2018). Currently, over 
75% of the total world's energy emanates from 
unsustainable fossil fuels (Al-Shahri et al., 2021; 
Elkadeem et al., 2019). The Kenyan economy had a 
growth rate of 5.4% in 2019 and thus the country 
experienced an annual increment in power demand of 
3.7% (Energy and Petroleum Regulatory Authority, 2022). 
Despite Kenya’s main electricity generation systems 
being renewable, there is still an energy crisis due to 
poor investment in modern power production 
techniques, over-reliance on hydro-power and 
monopolization of power distribution systems (Takase et 
al., 2021). Currently, power outages result in a financial 
loss average of USD 52,940 per month to the Kenyan 
economy (Takase et al., 2021). To help achieve energy 
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sustainability, there is a need to develop a decentralized 
energy system based on renewable technologies. 

Researchers are working on improving the efficiency 
of renewable energy technologies as a means of 
powering institutions and rural areas due to the 
availability of renewable energy technologies (Panwar et 
al., 2011). The Government of Kenya has prioritized 
renewable energy development for rural electrification 
to achieve Kenya’s Vision 2030 and the United Nation’s 
7th goal of sustainable development (Ndiritu & Engola, 
2020). Several research on the potential of different 
Hybrid Power systems (HPS) have been carried out based 
on their techno-economic feasibilities such as stand-
alone solar Photo-voltaic (PV), Standalone Wind turbine, 
Solar PV-biomass (PV-B), Wind-Biomass (W-B), Diesel-
Biomass-Battery (D-B-B), and Solar PV-Wind-Biomass 
(PV-W-B) (Bet & Zare, 2018; Dhunny et al., 2019; 
Shahzad et al., 2017; Vendoti & Kiranmayi, 2020). Most 
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of these studies have recommended the Solar PV-Wind 
as the most suitable off-grid HPS (Al Busaidi et al., 2016; 
Garg, 2022; Sawle et al., 2017; Zhang et al., 2022). 
However, the availability of biomass in learning 
institutions due to high population creates opportunities 
for its exploration as a solution to the growing energy 
demand in a hybrid energy system that is decentralized 
with high applicability to learning institutions. 

The application of HPS helps to improve power 
reliability by switching between different renewable 
resources, reducing the cost of energy and enabling 
remote areas to access power due to the decentralized 
nature of renewable energy systems (Kashif et al., 2020). 
Inspite of this, HPS still faces challenges in 
implementation due to designs that require specialized 
skills, high initial cost and storage complexities. 
(Uwineza et al., 2021; Yaqoot et al., 2016). Studies have 
been done on the development, improvement, and 
application of Solar PV-B HPS as a means of energy 
sustainability. More emphasis was put on the 
optimization of the produced power, the sensitivity and 
sustainability of the PV-B system (Ahmed et al., 2015; 
Child et al., 2018; Chowdhury et al., 2019; Ghenai & 
Janajreh, 2016; Habib & Mahmood, 2017; Sawle et al., 
2017, Ji et al., 2021; Shahzad et al., 2017).  

 
Fig. 1: The Study area (MMUST) 

According to Shahzad et al. (2017), a PV-B system 
with a mix of 18 KW was capable of serving a peak load 
of 17.08kW at a Cost of Energy (COE) of $ 0.066 for rural 
Pakistan. Similarly, Suresh et al. (2020), observed that 
an off-grid model of a PV-W, fuel cell and Battery with a 
combined peak load of 149.21kW at a COE of $ 0.163 
could comfortably run three villages in Kollegal block in 
India. Although several studies have implemented 
several optimization algorithms such as Particle swarm 
optimization (PSO), Genetic Algorithm (GA), differential 
evolution, Fuzzy Decision Making (FDM), Artificial Neural 
Network (ANN), Constant Voltage (CV) simulated 
annealing, and evolutionary metaheuristics to improve 
renewable power production and HPS system sizing, 
their power conversion efficiencies are still low 
(Alshammari & Asumadu, 2020; Dhunny et al., 2019; 
Elsheikh et al., 2019; Jyoti et al., 2018).  

The main objective of this study is to design a 
feasible, sustainable, and efficient HPS based on solar 
PV and Biomass renewable energy resources. The 
specific objectives for this research were: Determination 
of the most optimal energy mix from the available 
alternative energy resources; examination of the 
sensitivity of the optimal energy mix alternative based 
on variation on solar irradiation levels and inflation 
rates; and investigation of the sustainability of the 
alternative energy mix based on technical, economic, 
and environmental parameters for learning institutions. 
The design and analysis of the proposed PV-B system 
present an opportunity for a low-cost energy and 
improved power reliability to institutions. 

2. Materials and Methods 

2.1. The study area 

In this research, the study site was Masinde Muliro 
University of Science and Technology (MMUST), a high 
learning institution located in Kakamega, Kenya with 
latitude and Longitude coordinates of 0.288234o and 
34.765522o respectively as shown in Fig. 1.  

The university at its full peak is estimated to have a 
total population of over 21,000 students. Due to its 
location, the university receives plenty of solar 
irradiation levels averaged at 5.9 kWhm-2day-1 
throughout the year and the high population also leads 
to huge biomass resources. 

2.2. Data Collection 

2.2.1. Load Demand 
Data was collected for a period of 12 months 

(September 2021 to August 2022) using three power 
loggers ENOO38-EGauge (eGauge Systems LLC, version 
4.5). The power loggers were connected to three 
different terminal intake points (Main campus gate, hall 
Four and Star Annex). Each power logger was connected 
to the three-phase supply terminal using three current 
transformers.  Additionally, the power logger was 
connected to the internet for data transmission and 
retrieval using ENOO38-EGauge software installed in a 
remote computer Microsoft Windows 10 PC (intel core i7-
4500U CPU, 4GHz, 8GB (intel, Santa Clara, CA, USA)). 

2.2.2. Energy Resource Data 
Biomass can only be made useful when it is 

converted into heat through combustion or a clean 
useable form of energy such as biofuel, bio-syngas or 
biogas through biological, chemical, and 
thermochemical biomass conversion processes 
(pyrolysis, gasification, and liquefaction) which 
eventually can be converted to electrical energy (Ahmed 
et al., 2015). The conversion to electrical energy is done 
by using steam turbine generators, high-temperature 
biomass fuel cells, and microbial fuel cells (Ahmed et al., 
2015; Liu et al., 2020). Biomass is a non-intermittent 
energy resource and its incorporation into this research 
provides a cover-up for the intermittent nature of solar 
energy. 

MMUST has a high potential for biomass due to the 
huge population (high population density) and 
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agricultural biomass. Therefore, the biomass data 
applied in this study were from agricultural biomass, 
human wastes, and solid wastes. The mass of sludge was 
computed by sampling the sewage at the inlet valve. The 
sewer flow rate was determined by a venturi meter 
connected to the inlet. The sample collected was poured 
into a V-shaped volumetric flask. The mixture was 
allowed to settle and the volume of sludge was gotten 
which further led to the determination of the mass of 
sludge in the same sample. Eq. 1 shows the expression 
for the daily mass of sludge. 

                                         𝑀 =
𝑉 × 𝑚

𝑣
                                        (1) 

Where, 𝑀 is the Daily mass of sludge in tons, 𝑉 is the 
daily sludge volume, 𝑚 is the mass of solid sludge in 

the collected sample, 𝑣 is the volume of collected 
sewer sample. The agricultural biomass from animals 
estimation from the farm was calculated by Eq. 2 
(Shahzad et al., 2017). 

                        𝐵𝑀 = ∑ 𝑁𝑖𝑚𝑖 + ∑ 𝑃𝑌

𝑘

    

𝑖

𝑛=1

                (2)  

Where, 𝐵𝑀 is the Total Biomass produced in tons, 𝑛 is 
the number of specified animals’ groups, 𝑁𝑖 is the total 

number of animals, 𝑚𝑖 is the manure produced per head 

of the animal, 𝑃𝑌 is the monthly agricultural production 
in tons per acre, 𝑘 is the number of acres for agricultural 
produce.  

 
Fig. 2: Hybrid Power System Conceptual Framework for Solar PV-Biomass Hybrid System 

 
The solar irradiance data used in this study was 

based on the Global Horizontal Irradiance (GHI) which 
represents solar irradiance level on a horizontal surface 
(Yan et al., 2019). The average monthly GHI is based on 
data collected over 22 years and recorded by the 
National Aeronautics and Space Administration (NASA) in 
their online public repository in Hybrid Optimization of 
Multiple Energy Resources software (3.16.1, NREL, 
Colorado) (HOMER). The GHI is used together with the 
clearness Index. The clearness index is a dimensionless 
value between 0 and 1 that defines the clearness of the 
atmosphere. The monthly temperatures were collected 
for over 30 years, from January 1984 to December 2013 
and from the NASA database in HOMER Pro. 

2.2.3. System Design 
This research aimed at designing an optimal solar PV-

B with storage as a green energy solution alternative. 
Based on energy demand and load optimization, 
sensitivity and sustainability analysis were key 
approaches for the analysis of the HPS. HOMER pro 
software was applied in the simulation of the design, 
optimization, and sensitivity of the proposed energy mix. 
Fig. 2 presents the generalized layout of the proposed 
system. 

HOMER Pro is a hybrid energy optimization software 
used in the design and modelling of hybrid microgrid 
energy systems whose capabilities are simulation, 
optimization, and sensitivity analysis. It uses economic, 
technical, and environmental parameters as input 
variables to achieve the most optimal energy mix during 

the design stage (Dawoud, 2021; Uwineza et al., 2021). 
In this study, a simulation of several energy alternatives 
was performed to achieve the most optimal alternative 
energy mix. 

 
Fig. 3: Schematic Design of the proposed Hybrid energy system in 

HOMER Pro 

Based on cost minimization (least NPV and LCOE), 
HOMER Pro uses user input parameters of energy demand 
profiles, renewable energy resources available and 
conventional energy resources to select system 
components to be included in the microgrid being 
modelled (Shahzad et al., 2017). The guiding 
optimization equations for these operations are the 
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economic, technical, and environmental objective 
constraints. HOMER Pro uses two main algorithms which 
are Grid search Algorithm and Derivative free Algorithm 
in performing optimization. These optimization 
algorithms help in determining the optimal control 
strategies which help to achieve minimum operating 
costs and maximize renewable energy penetration. This 
study applied the Derivative-Free Algorithm (DFO) which 
is preferred in HOMER optimization due to its faster 
convergence and its inexpensive nature compared to the 
grid search algorithm (Rios & Sahinidis, 2013). Moreover, 
HOMER Pro assesses different other system 
configurations and ranks different hybrid energy 
alternatives from the renewable energy, conventional 
and storage inputs-based Techno-economic parameters. 
Fig. 3 shows the design of the proposed system as 
implemented in a HOMER Pro environment. 

Table 1: Properties of the simulated Solar PV Module 

Solar PV Properties Specifications 

Selected PV Module REC Solar325REC325PEM 72 PV 
Life Cycle 25-year 
Derating Factor Is  85% 
Temperature Coefficient  0.4520% per degree Celsius 
Standard Conditions 13% 
Tracking System No tracking system 
Module Costs  USD 650 per kW 
O&M Fee  USD 10 per year 
Replacement Cost  USD 550 

The amount of energy generated from the solar PV 
depends on several factors i.e., Solar insolation incident 
on the panel, the Sky Clearness Index, relative humidity, 
ambient temperature levels, panel type, and efficiency 
of conversion, shading, and orientation (Venkateswari & 
Sreejith, (2019)). The power generated by a PV module 
is given by Eq. 3 (Singh & Baredar, 2016). Table 1 
presents the properties of the simulated solar module 
applied in this study. 

        𝑃𝑃𝑉 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑁𝑃𝑉 (
𝐺

𝐺𝑅𝑒𝑓

) [1 + 𝐾𝑇 (𝑇𝐶 − 𝑇𝑟𝑒𝑓)]       (3) 

Where, 𝐺 is the solar irradiation ( W𝑚−1),  𝑃𝑁𝑃𝑉 is 

the rated power at reference conditions, 𝐺𝑟𝑒𝑓 is the solar 

irradiation at reference conditions (𝐺𝑟𝑒𝑓  =

 1000 W𝑚−1), 𝑇𝑟𝑒𝑓 is the reference temperature ( 𝑇𝑟𝑒𝑓  =

 25𝑜C),  𝐾𝑇 is the maximum power temperature 

coefficient for monocrystalline silicon, 𝑇𝐶 is the 
temperature for individual modules. 

Battery storage was incorporated into this hybrid 
energy system due to the intermittency nature of the 
renewable energy resources (Sánchez et al., 2022). 
Additionally, they boost system stability and reliability 
(Tephiruk et al., 2018). According to (Singh & Baredar, 
2016), The battery storage capacity is calculated by Eq. 
4. Table 2 presents the properties of the simulated 
battery storage module applied in this study. 

                   𝐶𝑤ℎ = [𝐸𝐿 ∗ 𝐴𝐷] ∗  𝑛𝑖𝑛𝑣 ∗ 𝑛𝑏 ∗ 𝐷𝑂𝐷                (4) 

Where, 𝐸𝐿 is the total energy demand, 𝐴𝐷 is the Daily 

autonomy, 𝐷𝑂𝐷 is the depth of discharge, 𝑛𝑖𝑛𝑣  is the 

efficiency of the inverter, 𝑛𝑏 is the battery efficiency. 

Table 2: Properties of the simulated Battery Storage 

Battery properties Specifications 

Selected Storage Module lead acid, Gel Solar Cell from 
chloride Exide battery technologies 

Max. Charge capacity 3.04kAh 
Max Charge Current 1.06kA 
Terminal voltage 2V 
life cycle 10-year 
Depth of Discharge  40% 
Round trip efficiency 95% 
Battery rating 6.07 kW 
module costs  USD 610 per kW 
O&M fee  USD 10 per year 
replacement cost  USD 600 

Converters are electronic devices which raise the 
level of the DC power produced by solar Panels from a 
lower level to a higher level maintain it at a specific level 
and convert it to AC power to be used by AC loads 
(Lupangu & Bansal, 2017). Table 3 presents the 
properties of the converter module applied in this study. 

Table 3: Properties of the Converter Module 

Converter properties Specifications 

Selected Converter 
Module 

Siemens Industry SININVERT 
PVS351 

Max. capacity 350 kW 
Inverter design Inbuilt 
Efficiency 96% 
Connection Mode parallel with the biomass AC 

generator 
Life cycle  15-year 
module costs  USD 280 
O&M fee  USD 30 per year 
replacement cost  USD 280 

Biomass conversion to electricity has attracted more 
interest due to the numerous applications of electrical 
power (Liu et al., 2020). More technologies have been 
introduced to convert biomass energy to electrical 
energy i.e., steam turbine generators, high-temperature 
biomass fuel cells, and microbial fuel cells (Liu et al., 
2020).  

Table 4: Specifications of the Biomass Generator 

Biomass Gen set properties Specifications 

Selected Genset Module Free size 
Max. rated capacity 540 kW 
Rated voltage 400 (50Hz) 
Phases 3 phase, 4 wires 
Gasification ratio 0.7 
Rated rotation speed 600rpm 
Life cycle  25-year 
module costs  USD 90,180 
O&M fee  USD 88,337.58. 
replacement cost  USD 90,180 

Turbine-based steam generators have predominantly 
been used for biomass to electricity conversion due to 
their initial use in the conversion of coal to electricity 
(Liu et al., 2020). Gasification, pyrolysis, and 
liquefaction processes are the intermediate processes 
used to provide the primary substrate used by turbine-
based steam generators. The biomass-operated steam 
turbines are big (in size) as a huge amount of biomass is 
needed to sustain their operation (Liu et al., 2020). 
Table 4 shows the specifications of the biomass 
generator chosen for this study. Table 5 shows the 
specifications of the diesel generator selected for this 
study. 
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Table 5: Specifications of the diesel generator 

Diesel Gen-set properties Specifications 

Selected Genset Module 800 kW Cummins 
Generator Set 

Prime power 800 kW/1000 kVA 
Standby power 880 kW/1100 kVA 
Phases 3 phase, 4 wires 
Diesel Engine Cummins KTA38-G5 
Rated rotation speed 1500rpm/50Hz 
Power factor 0.8Lag 
Weight 12300kg 
Space size 6000x2600x2800mm 
Life cycle  25-year 
Module costs  USD 200,000 
Replacement cost  USD 200,000 

This research aimed at reducing overreliance on the 
grid and therefore by design the grid was designed to be 
off most of the time with a sell-back of USD 0.05/kWh. 
There were no extra connection costs for the grid as the 
university had already been connected to the grid. With 
the rapidly growing net metering system, it was to cater 
for the sales of the excess power produced by the solar 
PV-Biomass hybrid energy system. 

2.2.4. Economic Parameters 
HOMER Pro carries out optimization feasibility 

through cost-benefit analysis considering cash flow for 
the 25-year expected life span. Net Present Value (NPV), 
Least Cost of Energy (LCOE), Capital Expenditure 
(CAPEX) and Operating Expenditure (OPEX) are some key 
economic parameters utilized in the HOMER tool for 
optimal economic analysis and optimal configurations. 
However, NPV and LCOE are the most cost-effective 
metrics in the HOMER tool for optimization (Uwineza et 
al., 2021). 

NPV represents the life cycle cost and examines the 
current or potential investment (Roche & Blanchard, 
2018). It is a way of determining the Return on 
Investment (ROI), which measures its profitability as 
shown by Eq. 5. 

                                          𝑅𝑂𝐼 =
𝐼 − 𝑃

𝑃
                                     (5) 

Where, 𝐼 is the investment gain, 𝑃 is the investment 
cost. NPV is used to calculate the time value of money 
and it takes into the project expenses, which include 
initial capital, component replacement, maintenance, 
and fuel costs. The calculations are done based on the 
present values of the anticipated cash flows as shown by 
Eq. 6 

                      𝑁𝑃𝑉 = −𝐶0 + ∑
𝐶

(1 + 𝑖)𝑡

𝑛

𝑡=1

                     (6) 

Where, 𝐶0 is the initial capital, 𝐶 is the cash flow, 𝑡 is 
time in years, 𝑖 is the interest rate. LCOE is the cost per 
unit of electricity which considers all the project's 
lifetime costs against the total produced electricity and 
was calculated by Eq. 7 (Roche & Blanchard, 2018) 

               𝐿𝐶𝑂𝐸 =   

𝐶0 + ∑
𝐿𝑡 + 𝑀𝑡 + 𝐹𝑡

(1 + 𝑟)𝑡

𝑛

𝑡=1
 

∑ 𝐸𝑡
𝑛
𝑡=1  

                  (7)  

Where, 𝐿𝑡 is the investment expenses in year t, 𝑀𝑡 is the 
O&M costs expenses in year t, 𝐸𝑡 is the produced 

electricity in year t, 𝐹𝑡 is the fuel expenses in year t, 𝑟 

is the discount rate, 𝑛 is the system life. 

CAPEX is the expenditure incurred while purchasing 
the HPS fixed assets such as solar PV, Biomass generator, 
storage and converters while OPEX is the daily to daily 
expenses incurred while operating the HPS such as cost 
of fuel, labour payments and routine maintenance aimed 
at keeping the HPS in good working conditions (Uwineza 
et al., 2021). 

2.2.5. Sensitivity Analysis  
Sensitivity analysis is a technique for analyzing how 

the optimal components of a system fluctuate when 
some input variables are changed and measuring the 
impact of each change on the project's result (Ji et al., 
2021; Roche & Blanchard, 2018). It evaluates the impacts 
of changes in various parameters on the energy systems' 
technical, economic, and environmental performance 
indicators, e.g., storage capacity, LCOE and system 
costs. Through sensitivity analysis, the ranges of the 
sensitivity parameters beyond which the system 
becomes infeasible were known for the microgrid 
designed.  

Table 6: Sensitivity variables 

Solar Irradiation (kWhm-2day-1) Expected Inflation (%) 

4.00 9.20 
5.90 10.00 
6.50 8.00 

In this study, solar irradiation and inflation rates 
were the chosen sensitivity parameters (Ji et al., 2021). 
The costs of solar panels and storage accounted for high 
costs during the optimization analysis, a sensitivity 
analysis was then conducted on solar irradiation levels to 
evaluate its effect on the system cost and overall sizing 
of the hybrid energy system. The effect of expected 
inflation on sensitivity analysis will help evaluate how 
resistant the design is to economic changes due to global 
economic practices. The choice of expected inflation as 
a sensitivity parameter was informed based on its 
importance in risk management, its impact on capital 
cost and future project viability. Table 6 lists the 
sensitivity variables that were used in the simulations. 

2.2.6. Sustainability Analysis  
Sustainability analysis aims to evaluate the 

environmental, economic, technical, and social impact 
of the project’s energy-generating capability to provide 
long-term energy planning and selection of sustainable 
energy resources based on the optimized solutions from 
optimization analysis (Ojong, 2021). The main indicators 
for sustainability analysis are economic parameters 
(Capital Cost (CC), NPV, Operating Cost (OC), Internal 
Rate of Return (IRR), Return on Investment (ROI), Simple 
Payback period (SPP), and LCOE), environmental impact 
parameters such as pollution, land use and GHG 
emissions (Carbon dioxide, carbon monoxide, Sulfur 
Dioxide, and Nitrogen Oxides levels emitted during 
energy generation), social parameters such as regional 
development and job creation, maximum capacity 
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parameters (Technical parameters) such as reliability, 
service life and even the installed capacity (Campos-
Guzmán et al., 2019). Sustainability analysis enabled the 
making of informed decisions by efficiently exploring 
energy alternatives and it was performed on the optimal 
hybrid energy alternatives from HOMER optimization.  

Algorithm 1: SAW Methodology 

1 𝐶𝑜𝑙𝑢𝑚𝑛 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑡ℎ 𝑟𝑜𝑤 𝑎𝑛𝑑 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑡ℎ  𝑐𝑜𝑙𝑢𝑚𝑛 
2 𝐹𝑜𝑟 𝑖 = 𝑚𝑎𝑡𝑟𝑖𝑥 𝑟𝑜𝑤, 

        𝑗 = 𝑚𝑎𝑡𝑟𝑖𝑥 𝑐𝑜𝑙𝑢𝑚𝑛, 
        𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎,  
       𝑆𝑖 = 𝑜𝑣𝑒𝑟𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 

3 𝐹𝑜𝑟 𝑊𝑖𝑗 = 𝑁𝑖𝑗 ∗ 𝑊𝑗 

4 
            𝑆𝑖 = ∑(𝑊𝑖𝑗

𝑛

𝑗=1

) 

The multi-criteria decision-making model (MCDM) 
approach was used for the performance of sustainability 
analysis. This approach enabled all the critical 
evaluation criteria to be merged and analyzed in a 
decision-making process. MCDM thus helped in 
evaluating the most feasible energy alternative from the 
available options. Four MCDM approaches were used for 
this project which were; Simple Additive Weighting 
(SAW), Multi-Attributive Border Approximation Area 
Comparison (MABAC), COmplex PRoportional Assessment 
(COPRAS) and Technique for Order Preference by 
Similarity to Ideal Solution (TOPSIS). The methodology 
for the approaches is as described below. 

Algorithm 2: TOPSIS Methodology 

1 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝐴, 𝑋 = [𝑋𝑖𝑗]𝑚∗𝑛 

2 𝐹𝑜𝑟               𝑃𝑖𝑗 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥, 

 𝑉𝑖𝑗 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑑𝑒𝑐𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥, 

 𝑤𝑗 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒  𝑗𝑡ℎ 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛, 

  𝐴∗ = 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑑𝑒𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 
 𝐴− = 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑑𝑒𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 
 𝑆∗

𝑖 = 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠 , 
 𝑅𝐶∗

𝑖 = 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑑𝑒𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  
3 

                   𝑃𝑖𝑗 =  
𝐴𝑖𝑗

√∑ (𝐴𝑖𝑗
2𝑚

𝑖−1
)

 

4 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑛𝑔 𝐹𝑜𝑟 𝑉𝑖𝑗 = 𝑃𝑖𝑗 ∗ 𝑤𝑗 

5 𝐴∗ = {𝑚𝑎𝑥 𝑣𝑖𝑗  , 𝑚𝑖𝑛 𝑣𝑖𝑗  } 𝑎𝑛𝑑 𝐴∗ = {𝑚𝑖𝑛 𝑣𝑖𝑗  , 𝑚𝑎𝑥 𝑣𝑖𝑗  }  

 
6 

𝑆∗
𝑖 = √∑(𝑉𝑖𝑗 − 𝑉𝑗

∗)
2

𝑚

𝑗=1

 𝑤ℎ𝑖𝑙𝑒 𝑆−𝑖 = √∑(𝑉𝑖𝑗 − 𝑉𝑗
−)

2
𝑚

𝑗=1

 

7 
𝑅𝐶∗

𝑖 =  
𝑆−𝑖

𝑆∗
𝑖+ 𝑆−𝑖  

 

8 𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑅𝐶∗
𝑖  

SAW:  This MCDM method consists of three major steps 
which are decision matrix X normalization, weight vector 
assigning and finally overall score calculation for each 
alternative (Goodridge, 2016). Algorithm 1 illustrates 
the SAW methodology. 

Algorithm 1: MABAC Methodology 

1 𝐹𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑋 
2 𝐹𝑜𝑟  𝑋𝑖𝑗 = 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑤𝑟𝑡 𝑗𝑡ℎ ,  

          𝑥𝑖
+ = 𝑚𝑎𝑥 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠,  

          𝑥𝑖
+ = 𝑚𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠,  

          𝑛𝑖𝑗 = 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡𝑦𝑝𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎  

           𝑉𝑖𝑗 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑎𝑡𝑟𝑖𝑥,  

            𝑔𝑖 = 𝑇ℎ𝑒 𝑏𝑜𝑎𝑟𝑑𝑒𝑟 𝑎𝑝𝑝𝑟𝑜𝑥 𝐷𝑒𝑐𝑖𝑠𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛    
3 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑛𝑔 𝐹𝑜𝑟 𝑉𝑖𝑗 = 𝑤𝑖 ∗ (𝑛𝑖𝑗 + 1) 

4 

           𝑔𝑖 = ( ∏ 𝑣𝑖𝑗)

𝑚

𝑗=1

1
𝑚

    

 
5 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑏𝑜𝑎𝑟𝑑𝑒𝑟 𝑎𝑟𝑒𝑎 (𝑄) = 𝑉 − 𝐺 
6 𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠  

TOPSIS: The TOPSIS method used in this research 
involved assigning two sets of reference points when 
finding the ideal solution (positive and negative). The 
positive ideal solution maximizes the benefit criteria and 
minimizes the cost criteria, whereas the negative ideal 
solution maximizes the cost criteria and minimizes the 
benefit criteria (Goodridge, 2016). TOPSIS determines 
the best alternative by minimizing the distance to the 
ideal solution and maximizing the distance to the 
negative ideal solution. This method assumes that each 
attribute is monotonically increasing or decreasing. 
TOPSIS utilized Euclidean distances to measure the 
alternatives with their positive ideal solution and 
negative ideal solution. The preference order of 
alternatives is yielded by comparing the Euclidean 
distances. The preference order of alternatives is 
yielded through a comparison of Euclidean distances 
(Goodridge, 2016; Yadav et al., 2018). Algorithm 2 shows 
the TOPSIS methodology. 

Algorithm 2: COPRAS Methodology 

1 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑋, 𝑋 = [𝑋𝑖𝑗]𝑚∗𝑛 

2 𝐹𝑜𝑟𝑋𝑖𝑗 = 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑤𝑟𝑡 𝑗𝑡ℎ ,  

 𝑚 = 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠, 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎, 
 𝑄𝑖 = 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒, 
𝑆+𝑖   𝑎𝑛𝑑 𝑆−𝑖  𝑎𝑟𝑒 𝑠𝑢𝑚𝑠𝑓𝑜𝑟 𝑚𝑎𝑥 𝑎𝑛𝑑 𝑚𝑖𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎  

𝑈𝑖 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑑 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 
 

3 𝐷𝑒𝑐𝑖𝑠𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ,  
4 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑛𝑔 𝐹𝑜𝑟 𝑊𝑖𝑗 = 𝑁𝑖𝑗 ∗ 𝑊𝑗 

5 
𝑆+𝑖 = ∑(𝑊𝑖𝑗

𝑛

𝑗=1

)  𝑎𝑛𝑑 𝑆−𝑖 = ∑(𝑊𝑖𝑗

𝑛

𝑗=1

)  

 
6 𝐷𝑒𝑐𝑖𝑠𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 
7 

𝑄𝑖 = 𝑆+𝑖 + 
𝑆−𝑚𝑖𝑛 ∑ 𝑆−𝑖

𝑚
𝑖=1

𝑆−𝑖  ∑
𝑆−𝑚𝑖𝑛

𝑆−𝑖

𝑚
𝑖=1

 

8 
𝑈𝑖 =  

𝑄𝑖

𝑄𝑖 𝑚𝑎𝑥 
∗ 100% 

9 𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑠  

MABAC: The MABAC algorithm involved the formation of 
a primary decision matrix as the first step (Bose et al., 
2019). This was followed by the normalization of the 
ultimate decision matrix. Thirdly, the weighted 
normalized decision is calculated and finally, the overall 
alternative was computed (Bose et al., 2019). Algorithm 
3 shows the MABAC methodology. 

COPRAS: This method involved ranking the alternatives 
in order of their relative importance. The first step 
involved the formulation of the decision matrix; the 
decision matrix is then normalized (Stanojkovic & 
Radovanovic, 2017). Finally, the coefficient of efficiency 
is then determined and then the alternatives are ranked 
from higher percentage to lower percentage 
(Stanojkovic & Radovanovic, 2017). Algorithm 4 shows 
the COPRAS methodology. 
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3. RESULTS 

3.1. Load Assessment 

The total annual load as shown in Table 7 was 
established to be 662,682.99 kWh for a period between 
September 2021 and August 2022. Consumption was high 
at the main campus with a total of 569,625.38 kWh and 
low at Star-Annex with 8,185.32 kWh.The highest 
monthly consumption was in March with 69,573.88 kWh 
and the lowest consumption by month being in August 
2022 at 41,021 kWh.  

 
Fig. 4: Daily load demand for a day in January 

A typical load profile for a selected day in March 
(Monday, 6th March 2022) is given in Fig. 3 while Fig. 4 
shows the seasonal load profile for an academic year. 
The Average hourly Energy Demand was 75.66 kW with 
the peak demand being 293.74 kW (with the considered 
day-to-day swing of 5%). The monthly average load 
demand was 54,474 kWh. The mean seasonal 
consumption was found to be 54,474.5825 kWh with a 
standard deviation of 11,274.07 as depicted in Table 8. 

 
Fig. 5: Seasonal load profile 

3.2. Resource Assessment 

3.2.1. Biomass Energy Resource 
It was established that the average monthly biomass 

was 2.1 tons of biomass with a standard deviation of 
1.081597094. The minimum biomass collection was 0.45 

tons and a maximum of 2.925 tons as shown in Table 8. 

The sewer flowrate was established as 0.0029 m3s-1. The 
biomass resource was highest in November at 2.925 tons 
and was lowest in June, July, and August at 0.45 tons as 
depicted in Fig. 6. 

3.2.2. Solar Energy Resource 
Solar irradiation data showed that the annual scaled 

average solar irradiation was 5.90 kWhm-2day-1 with the 
scaled annual average clearness index being 0.5897. 
September had the highest solar irradiation of 6.279 5.90 
kWhm-2day-1 while May had the lowest solar irradiation 
levels at 5.3635.90 kWhm-2day-1. Table 9 shows the GHI 
resource (clearness Index, Daily radiation, and Daily 
temperature). 

Table 7: MMUST Monthly Power Consumption 

Month/Year Main Campus (kWh) Hall Four (kWh) Star Annex (kWh) Total Energy demand (kWh) 

Sep-21 40,612.56 5,038.7 138.01 45,789.27 
Oct-21 52,833.08 1,0375.38 918.77 64,127.23 
Nov-21 55,773.35 12,542.57 1,009.46 69,325.38 
Dec-21 44,563.55 8,343.65 918.77 53,825.97 
Jan-22 48,422.66 9,020.9 500.1 57,943.66 
Feb-22 52,189.89 10,700.46 869.42 63,759.77 
Mar-22 56,600.31 12,271.67 701.9 69,573.88 
Apr-22 54,854.52 10,890.09 920.68 66,665.29 
May-22 42,450.23 1,462.85 619.09 44,532.17 
Jun-22 41,255.74 1,083.6 662.46 43,001.8 
Jul-22 41,531.39 1,002.32 583.6 43,117.31 
Aug-22 38538.1 2140.1 343.06 41021.26 

 569,625.38 84,872.29 8,185.32 662,682.99 

 

3.3. Optimization Analysis 

The best architecture presented in Table 10 after 
optimization analysis based on NPV and LCOE was a 
combination of 360 kW of REC Solar325REC325PEM 72 
(Solar PV), 576 Strings of lead acid- Gel Solar Cell 
(storage battery), a 142 kW Siemens Industry SININVERT 
PVS351 (converter with inbuilt inverter), 800 kW diesel 
generator (standby supply for the hybrid system), and a 
540kW biomass generator with HOMER Load Flow (LF) 
dispatch strategy at a NPV of USD 1.93M, Capital cost of 
USD 915,505.30, LCOE of USD 0.10032, operating costs of 
USD 34,868.61 per year, electricity production of 

74,790.1 kW and excess energy of 49,062.51kW with a 
potential of being sold back to the grid.  

However, the base case scenario (Diesel generator) 
was established to be a diesel generator of 800kW having 
capital expenditure (CAPEX) of USD 200000, NPV of 
USD 23.2M, operating cost (OPEX) of USD 795,631 per 
year with an annual electricity production of 
1,753,472 kWh and 1,465,253 kilograms of CO2 per year. 
With its standard capacity, it consumes 554,381.5 liters 
of fuel per year which amounts to USD 776,134.1. It had 
the LCOE of USD 1.2 for every unit of electricity it 
produced.  
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Table 8: Descriptive Statistics for the Seasonal Load and Biomass 
Resource 

Descriptive 
Statistics 

Load Assessment 
Values (kWh) 

Biomass Values 
(tons) 

Mean 54,474.5825 2.104545455 
Standard Error 3254.542628 0.326113794 
Median 55884.815 2.775 

Standard Deviation 11,274.06638 1.081597094 
Sample Variance 127,104,572.6 1.169852273 
Kurtosis -1.924501209 -0.899731796 
Skewness 0.005797329 -1.065738749 
Range 28552.62 2.475 
Minimum 41,021.26 0.45 
Maximum 69,573.88 2.925 
Sum 662,682.99 23.15 

 

The optimal alternative compared with the base 
case scenario, the NPV would rose to USD 23.2M which is 
USD 21.27M greater than the optimal scenario. 
Consequently, the LCOE also increased to USD 1.2109 
under the base case scenario which is USD 1.1106 higher 
than the optimal scenario. The diesel generator used in 
the base case scenario would operate the whole year 
with an annual OPEX of USD 795,631, and annual 
electricity production of 1,753,472 kWh (which is higher 

than the electricity produced by optimal solution by 
1,005,564.9 kWhyr-1) while consuming 554,381.5 liters 
of fuel per year which amounts to USD 776,134.1 while 
emitting 1,465,253 kilograms of CO2. It had an 
investment cost of USD 200,000. 

The capital investment for this most optimal project 
would be USD 915,505.27 where storage contributes to 
38.38% followed by solar PV at 25.58%. Diesel generator, 
Biomass generator and converter would make up 21.85%, 
9.85% and 4.34% respectively. The operational and 
Maintenance costs were USD 587,072.30 with solar PV 
taking the bulk of this O&M at 35.54%, storage at 28.41% 
followed by converter at 21.00% and Biomass generator 
at 15.05%. Table 12 below shows the NPV summary of the 
individual components of the optimal alternative. Fig. 7 
shows the shared energy generation between solar PV 
and Biomass generator. The results show that solar PV 
generated the bulk of the power throughout the year 
with an annual generation of 612,535.915 kW (81.9%) as 
compared to annual generation by biomass generator of 
135,371.185 kW (18.1%). 

 
Fig. 6: MMUST Biomass Resource 

 

3.4. Sensitivity Analysis 

Based on inflation and irradiation factors, the 
sensitivity analysis established that the system was 
stable from a solar irradiation level of 5.904 to 6.5. An 
increase in solar irradiation levels from 4 to 6.5 kWhm-

2day-1 saw a reduction in the LCOE from USD 0.1029471, 
USD 0.09395795, and USD 0.09271287. This is 9.94% 
reduction in the LCOE when the solar irradiation was at 
6.5 kWhm-2day-1 and the inflation rate at 10%. 
Additionally, this saw an increment in the generated 
energy by 9.75% and the level of emissions was also 
reduced by 71.34% as bulk energy will be supplied by 
solar making biomass generator to only supply a small 
quantity of power. The capital investment and NPV also 
reduced by 6.67% and 9.94% respectively. 

At an inflation rate of 8%, and with solar irradiation 
levels varying from 4 to 6.5 kWhm-2day-1, saw an 

increment in the LCOE from a minimum of USD 0.0927 
which was realized at an inflation rate of 10% to a 
minimum of USD 0.10797 at this discounted rate of 8%. 
However, at 8% of the expected inflation rate, there is 
an increment in the operation cost of the renewable 
energy system by 23.57%. With this inflation rate, the 
system becomes more sustainable as the diesel 
generator is eliminated from the system and the 
maximum emission produced at this level drops from 
272.9243 kgyr-1 to 115.4709 kgyr-1 which is a 57.69% 
reduction in GHG emitted to the atmosphere. This 
inflation rate produced the least NPV of 1,789,013 
indicating how viable the project would be with a drop 
in the inflation rate. The capital needed for investment 
during this period was also low at USD 714,462.1 when 
compared to USD 914,392.3 (21.86% reduction in 
investment cost) when the inflation rates were 10%. The 
system size was smaller in this scenario at 900 kW as 
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compared to inflation rates of 10% and 9.2% when the 
system size was 1700 kW minimum. 

Table 9: Solar Energy Resource Data 

Month Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Average 

Clearness Index 0.619 0.621 0.594 0.531 0.554 0.601 0.585 0.592 0.607 0.578 0.566 0.628 0.5897 
Daily radiation (kWhm-2 day-1) 6.205 6.438 6.242 5.425 5.363 5.607 5.532 5.877 6.279 5.984 5.700 6.199 5.9043 
Daily Temperature (oC) 21.180 22.20 22.69 21.60 20.60 19.80 19.380 19.81 20.63 20.84 20.56 20.65 20.8283 

 
However, as the inflation moves to 9.2%, the system 

size increases with the addition of the diesel generator. 
Consequently, the emissions to the atmosphere also 
increased beyond the levels experienced when the 
inflation rates were 8%. The optimal hybrid configuration 
was sensitive to both inflation rates and solar irradiation 
levels where low inflation rates and high solar insolation 
led to smaller energy system size with low NPV cost and 
smaller capital invested for the same project. Table 11 
shows how the top two optimization results responded to 
the variations in solar irradiation levels and expected 
inflation rates. 

3.5. Sustainability Analysis  

The sustainability result was based on four MCDM 
techniques to select the best of the nine alternatives. 
The parameters used for sustainability analysis are 
presented in Table 13. SAW, TOPSIS. MABAC and COPRAS 
were used for the sustainability analysis and Table 14 
shows the results obtained from each of the MCDM 
Criteria based on Sum and Vector, Maximum and 
Minimum, DEA. It was established that using the SAW 
MCDM technique, the best alternative was A3 using the 
sum-vector normalization, A2 using Max-Min 
normalization and A2 using DEA normalization. According 
to the TOPSIS technique, it was established that the best 
alternative was A3 using the sum-vector normalization, 

A2 using Max-Min normalization and A2 using DEA 
normalization. It was established that using the MABAC 
MCDM technique, the best alternative was A3 using the 
sum-vector normalization, A2 using Max-Min 
normalization and A2 using DEA normalization. According 
to the COPRAS technique, it was established that the 
best alternative was A2 using the sum-vector 
normalization, A2 using Max-Min normalization and A2 
using DEA normalization.  

The average rankings based on all the applied MCDM 
criteria is presented in Fig. 8. It was established that A2 
was the most sustainable alternative. The sustainability 
analysis revealed the most sustainable alternative had 
the following configurations: The best architecture 
(Table 10) after optimization analysis based on NPV and 
LCOE was a combination of 360 kW of REC 
Solar325REC325PEM 72 (Solar PV), 576 Strings of lead 
acid- Gel Solar Cell (storage battery), a 142 kW Siemens 
Industry SININVERT PVS351 (converter with inbuilt 
inverter), and a 540 kW biomass generator with HOMER 
Load Flow (LF) dispatch strategy at 100% renewable 
energy at a NPV of USD 1.97M, Capital cost of USD 
715,505.30, LCOE of USD 0.1026, operating costs of 
USD 43,302.48 per year, electricity production of 
74,790.1 kW and excess energy of 49,062.51 kW with a 
potential of being sold back to the grid. 

 
Fig. 7: Shared energy generation between solar PV and Biomass generator 

 
A comparison between the optimal HPS (A1) and 

Sustainable HPS (A2) shows a reduction of 43.24% in GHG 
emissions, reduced system capacity to 900 kW and a 
21.85% reduction in the capital expenditure for the 
energy system. Moreover, the renewable penetration 

also grew to 100% from 98% as depicted in Table 10. 
Table 15 presents the NPV Summary for the sustainable 
alternative. 
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Table 10: Optimization Results 

 PV D. Gen 
(kW) 

Bio Gen 
(kW) 

Storage Converter 
(kW) 

Dispatch NPC 
(USD) 

LCOE 
(USD/kWh) 

Operating 
cost ($yr-1) 

CAPEX ($) OPEX ($yr-1) Ren Frac 
(%) 

Elec Prod 
(kWhyr-1) 

Excess 
Energy 
(kWhyr-1) 

Unmet 
load 
(kWhyr-1) 

Emissions 
(kgyr-1) 

A1 360 800 540 576 142 LF 1.93M 0.1003 34,868.61 915,505.30 20,276.27 98 747,907.10 49,062.51 0 150.30737 
A2 360 

 
540 576 142 LF 1.97M 0.1026 43,302.48 715,505.30 20,276.27 100 747,907.10 49,062.51 0 85.30737 

A3 609 800 
 

576 256 LF 2.41M 0.1255 47,966.72 1,019,070 25,710.12 97.21624 1,054,718 345,774.40 0 15,408.86 
A4 902 

  
816 274 LF 3.06M 0.1597 65,711.35 1,161,008 34,433.24 100 1,534,146 825,192.20 0 0 

A5 920 800 540 576 1118 LF 6.72M 0.1016 178,489.70 1,552,698 -177,060.80 70.42544 2,456,648 28,304.23 0 564,993.90 
A6 920 800 540 

 
657 LF 8.00M 0.0976 239,189.40 1,072,252 -275,787.90 60.06177 2,906,469 12,966.90 0 945,011.30 

A7 
 

800 540 576 154 LF 8.28M 0.4314 262,297.30 684,765 18,960.65 25.68828 700,103.40 359.8881 0 411,732.90 
A8 920 800 

 
576 1125 LF 8.89M 0.1379 256,212.80 1,464,565 -172,215.60 62.26529 2,403,993 26,458.38 0 701,711.60 

A9 
 

800 
 

576 157 LF 10.8M 0.5611 351,315.90 595,250 14,025.50 0 712,846.30 407.5748 0 595,709.70 
A10 920 800 

  
657 LF 10.8M 0.1298 340,077 982,072 -287,703.50 51.69023 2,956,314 12,966.90 0 1,163,033 

A11 
 

800 540 576 119 LF 12.7M 0.3826 415,377.30 674,790 -52658.23 13.62987 1,202,654 77.9827 0 827,727 
A12 920 800 540 

 
138 LF 13.8M 0.7203 445,389.60 926,750 33,619.70 0 2,675,986 2,007,791 0 759,103.40 

A13 
 

800 
 

576 147 LF 14.6M 0.4736 484,892.90 592,590 -44,794.23 0 1,137,881 75.92556 0 950,968.30 
A14 

 
800 540 

  
LF 15.5M 0.3179 524,281.90 290,180 -139,608.10 12.57025 1,680,721 0 0 1,228,009 

A15 
 

800 540 
  

LF 17.5M 0.9101 593,153.10 290,180 12,792.80 0 1,487,966 825,199.30 0 1,072,192 
A16 

 
800 

   
LF 18.5M 0.3643 632,001.60 200,000 -154,869.70 1.11E-14 1,753,632 0 0 1,465,253 

A17 920 800 
  

137.75 LF 19.8M 1.0210 653,726.40 836,570 29,487.50 0 2,956,714 2,289,194 0 1,163,368 
A18 

 
800 

   
LF 23.2M 1.2109 795,631.30 200,000 8,760 0 1,753,632 1,090,865 0 1,465,253 

 

 

Table 11: Sensitivity Analysis Results 

Sensitivity Parameter  Sizes of the Individual System Architecture  Economic Parameters  Technical Parameters  Environmental 
Parameters 

Expected 
Inflation 
(%) 

Solar 
Irradiation 
(kWhm-2 day-1) 

 Solar PV 
(kW) 

D.Gen 
(kW) 

B. Gen 
(kW) 

Storage 
(No.) 

Converter 
(kW) 

 LCOE 
($/kWh) 

OC ($yr-
1) 

CAPEX 
($yr-1) 

OPEX 
($yr-1) 
 

NPV ($)  Elec Prod 
(kWhyr-1) 

Excess 
Energy 
(kWhyr-1) 

 CO2 Emissions 
(Kgyr-1) 

10 4  468.1599908 800 540 576 126.3133425  0.1029471 37579.86 981211.8 22885.3 2184269  722125.8 24954.59  272.9243 
10 5.904  360 800 540 576 138.7580829  0.09395795 33709.39 914392.3 20235.84 1993543  749213.4 50336.55  86.59445 
10 6.5  360.803463 800 540 576 141.693234  0.09271287 32842.21 915736.4 19948.47 1967126  792583.5 92933.16  78.21137 
8 4  444.7178444  540 576 124.4000421  0.1192305 48404.47 765438.6 22795.46 1975550  708536.7 12559.96  115.4709 
8 5.904  360  540 576 139.0075017  0.1093284 43880.79 714462.1 20240.63 1811482  749119 50241.77  86.53197 
8 6.5  360  540 576 140.1577981  0.1079724 42969.16 714784.2 19907.93 1789013  791749.4 92132.23  78.65888 
9.2 4  454.861939 800 540 576 124.3216789  0.1096056 39071.75 972010.3 22802.59 2103280  714844.5 18395.84  278.5603 
9.2 5.904  360.3368172 800 540 576 141.9512247  0.1003193 34868.61 915505.3 20276.27 1925079  747907.1 49062.51  85.30737 
9.2 6.5  360.8091684 800 540 576 141.6996138  0.09906077 34026.36 915741.9 19948.77 1900929  792594 92943.67  78.21135 
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Fig. 8: Ranking of the alternatives in sustainability analysis 

4. DISCUSSION 

4.1. Load Assessment  

The daily load curve in Fig. 4 shows the electrical 
power consumption based on the activities taking place 
within the study area. The consumption remains 
relatively low 0000hrs to 0500hrs due to minimized 
students and learning activities (street and security 
lights mostly on). This reduced activities also relates to 
the power consumption between 1600hrs and 1700hrs.  

Power consumption is high between 0600hrs and 
1100hrs due to increased student activities and learning 
activities which start from 0700hrs. Moreover, between 
1800hrs and 2200hrs, power consumption is also high due 
to increased student activities back in the hostels. The 
daily load demand as curve concurs with a study of 
Popoola et al. (2018) for covenant university based in 
Nigeria in their smart campus energy data research.  

The high-power consumption between January to 
April and October to December as depicted in Fig. 5 was 
attributed to increased academic activities (First and 
second academic semesters) i.e., increased learning 
activities and student activities within the university. 
The period between May and September is associated 
with reduced power consumption due to reduced 
academic activities associated with semester breaks and 
minimal administrative work. The University also carries 
out scheduled maintenance during this period switching 
off many energy-consuming equipment hence reducing 
power consumption during this time. Only school-based 
students which are few are the ones present during that 
time and their power consumption is low. The seasonal 
load data trends evidenced in this research concur with 
the MMUST academic calendar (MMUST Almanac, 2021).

Table 12: Cost summary of the most Optimal architecture (A1) 

Component Capital ($) Replacement Cost ($) O&M ($) Fuel ($) Salvage ($) Total ($) 

Diesel Gen 200,000.00 0.00 0.00 0.00 (244,191.36) (44,191.36) 
Storage 351,360.00 830,696.10 166,773.02 0.00 (231,576.45) 1,117,225.67 
Bio. Gen 90,180.00 105,062.98 88,337.58 0.00 (66,910.41) 216,670.16 
PV 234,218.93 0.00 208,661.42 0.00 (0.00) 192,494.35 
Converter 39,746.34 46,911.62 123,300.27 0.00 (17,464.17) 192,494.06 
System 915,505.27 982,643.70 587,072.30 0.00 (560,142.39) 1,925,078.88 

 

4.2. Optimization Analysis 

The PV and Biomass generator were considered a 
primary source of supplying the loads within the 
university due to the abundance of solar irradiation and 
biomass within the university. Solar PV and biomass HPS 
show a complementary characteristic which helps in 
minimizing the intermittency associated with individual 
renewable sources majorly the solar energy resource. 
Due to the variability of renewable energy resources 
throughout the year which was a design consideration for 
this project, there arose excess power generation which 
would be sent back to the grid using a net metering 
system. The introduction of a diesel generator in the 
optimization analysis provided a means of backup during 
extreme weather conditions as it contributed to almost 
0% of the total energy generated due to the efficiency of 
the utilized LF dispatch strategy which declined the 
operating hours of the diesel generator, leading to 
negligible fuel consumption and limiting the GHG 
generation. This diesel generator behavior concurs with 
a study by Elkadeem et al. (2019) where solar PV was 
used to generate 63.1% of total power supplied in 
Dongola, Sudan for rural agricultural electrification 
while wind generator generated only 33% and less than 
1% of power demand was supplied by the diesel 
generator. The availability of solar irradiation 
throughout the year as opposed to biomass whose bulk 

tends to be during academic peak moments, led to solar 
PV contributing to the bulk of power generation (81.9%) 
as opposed to biomass generator (18.1%) as depicted in 
Fig. 7. Moreover, this availability of solar irradiation 
makes it cheaper to maximumly use solar panels to 
generate the bulk of power which concurs with a study 
by Ghenai & Janajreh (2016) where solar PV was used to 
generate 74% of total power supplied for electrification 
of Sharjah city, United Arab Emirates while Biomass 
generator generated only 26%. 

From Table 11 on the Cost summary of the NPV of 
the optimal HPS, it is observed that storage constitutes 
the bulk of the capital invested for the project at 38.38% 
leading to the overall NPV of the system at USD 1.93M. 
With the rapidly advancing technology, production of 
cheaper storage is expected and this will lead to reduced 
storage costs furthermore leading to reduced NPV and 
low COE. The comparison between the optimal scenario 
and base case scenario (oversized diesel generator of 
800 kW) reveals a high difference in NPV and LCOE due 
to the high maintenance costs of the diesel generator, 
high fuel consumption throughout the year and high GHG 
emission making it the least likely system to be used as 
the main power source for learning institutions. With the 
proposed project having the LCOE of USD 0.1026 as 
compared to USD 1.2109 of the base case scenario, this 
project will substantially lower the cost of power and  
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Table 13: Hybrid energy alternatives system parameters considered for sustainability analysis 

Hybrid Energy Systems Alternatives Technical Parameters  Economic Parameters  Environmental Parameters 

STC 
(kW) 

EP 
(kW) 

EE 
(kW) 

UL  
(kW) 

RF (%)  NPC ($) CAPEX ($) OC  
($/yr) 

LCOE ($/kWh)  CO2 
(kg) 

CO 
(kg) 

SO2 
(kg) 

NOx 
(kg) 

PV-D. Gen-Storage-Bio Gen 1700 747,907.1 49,062.51 0 98  1.93M 915,505.3 34,868.61 0.1003  95.3 1.947 0 0.992 
PV- Bio Gen -Storage 900 747,907.1 49,062.51 0 100  1.97M 715,505.3 43,302.48 0.103  85.3 0.947 0 0.592 
PV-D. Gen-Storage 1409 105,4718 345,774.4 0 97.3  2.41M 1,019,070 47,966.72 0.1255  15,409 10.4 38.2 98.3 
PV-Storage 902 1,534,146 825,192.2 0 100  3.06M 1,161,008 65,711.35 0.1597  0 0 0 0 
PV-D. Gen-Storage-Bio Gen-Grid 2260 2,456,648 28,304.23 0 70.4  6.72M 1,552,698 178,489.7 0.1016  564994 384 1402 3604 
D. Gen-Storage-Bio Gen-Grid 2260 2,906,469 12,966.9 0 60.06  8.0M 1,072,252 239,189.4 0.0976  945011 641 2345 6029 
D. Gen -Bio Gen-Storage  1340 700,103.4 359.8881 0 25.69  8.3M 684,765 262,297.3 0.4314  411733 280 1022 2627 
PV-D. Gen-Storage-Grid 1720 2,403,993 26,458.38 0 62.27  8.9M 1,464,565 256,212.8 0.1379  701712 475 1742 4477 
D. Gen-Storage 800 712,846.3 407.5748 0 0  10.8M 595,250 351,315.9 0.5611  595710 403 1479 3800 

 

 

Table 10: Ranking of the alternatives in sustainability analysis 

MCDM 
methods 

Alternatives based on the Normalization of DM 

Sum and Vector  Max-Min  DEA 

A1 A2 A3 A4 A5 A6 A7 A8 A9  A1 A2 A3 A4 A5 A6 A7 A8 A9  A1 A2 A3 A4 A5 A6 A7 A8 A9 

SAW 3 2 1 4 7 5 8 9 6  2 1 3 4 7 5 8 9 6  2 1 3 7 5 8 9 6 4 
TOPSIS 3 2 1 4 7 5 8 9 6  2 1 3 4 7 5 8 9 6  2 1 3 4 7 5 8 9 6 
MABAC 3 2 1 4 7 5 8 9 6  2 1 3 4 7 5 8 9 6  2 1 3 7 5 8 9 6 4 
COPRAS 2 1 3 4 5 8 7 6 9  2 1 3 4 5 8 6 7 9  2 1 3 4 7 5 8 6 9 

 

 

Table 15: NPV Summary for the most sustainable alternative (Solar PV-Biomass Energy system) 

Component Capital ($) Replacement Cost ($) O&M ($) Fuel ($) Salvage ($) Total ($) 

Storage 351,360.00 830,696.10 166,773.02 0.00 (231,576.45) 1117225.65 
Bio. Gen 90,180.00 105,062.98 88,337.58 0.00 (66,910.41) 216,670.16 
PV 234,218.93 0.00 208,661.42 0.00 (0.00) 442,880.35 
Converter 39,746.34 46,911.62 123,300.27 0.00 (17,464.17) 192,494.06 
System 715,505.27 982,643.70 587,072.30 0.00 (315,951.03) 1,969,270.23 
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with its breakeven period of 5.2 years, the project will 
be self-sustainable and generate profits to help the 
university be energy sufficient. This breakeven period is 
in line with studies of Chowdhury et al., (2020), where 
PV-B HPS yielded 7.2 years as its breakeven period. 

According to Pradhan (2017), the use of such hybrid 
energy system also leads to the advancement of 
technology within the country and in learning institutions 
while at the same time improving the overall power 
efficiency at reduced levels of GHG emission as 
evidenced in this research where the optimal scenario 
had emissions of 150.30737 kgyr-1 compared to the base 
case which had 1,465,253 kgyr-1. This finding concurs 
with Ayadi et al. (2020) in their research on renewable 
integration in smart grid, the environmental effects of 
fossil fuels as a result of renewable energy integration 
into the system were reduced and overreliance on fossil 
dropped as well as the creation of more jobs in the field 
of renewable energy development.  

4.3. Sensitivity Analysis  

From Fig. 7, Solar PV constituted the bulk of the 
power generated, a sensitivity analysis was conducted to 
evaluate the impact of solar irradiation levels and 
variation in inflation rates on the economic, technical 
and sustainability parameters. With the increasing solar 
irradiation levels, there was a reduction in the solar PV 
capacity as well as the capital invested in the project 
i.e., more power would be drawn from the system and 
more batteries would be charged. Moreover, as the 
inflation rate increases, there is a corresponding 
increase in the system cost and the COE also increases. 
This concurs with Shahzad et al. (2017), who carried out 
a sensitivity analysis on PV-B for rural Pakistan where the 
higher the solar irradiation was, the smaller the system 
cost and the lower the COE. As depicted in Table 11, the 
optimal configuration converged at an 8% inflation rate 
with solar irradiation of 6.5 kWhm-2 day-1 as it had the 
lowest NPV making the system cost more attractive to 
investors due to the low capital investment required. At 
this inflation rate, PV-B HPS had superior economic and 
technical parameters compared to PV-B-DG. The 
exclusion of generator at this inflation rate led to a low 
GHG emission. The variations in inflation rates and 
climatic conditions have a greater impact on the system, 
these parameters thus need to be of key concern to 
renewable energy developers at the design stage. 

4.4. Sustainability Analysis  

Hybrid energy projects use modern technologies 
which promise affordable electricity costs and sustained 
environmental and improved social welfare of the people 
whose lives depend on such technological 
advancements. The elimination of the diesel generator 
from the system ensured reduced dependency on fossil 
fuels which contributes to GHG emissions. Moreover, it 
also resulted in reduced investment costs. The 
renewable energy penetration also increased to 100% as 
the system fully became dependent on PV-B HPS. This 
study concurs with a study by Elkadeem et al. (2019), 
where a sustainability analysis for techno-economic 
analysis for off-grid HPS (based on PV, W and DG) in 

Dongola, Sudan reduced the GHG emission from 351,3972 
kgyr-1 to 168,786 kgyr-1 due to reduced dependency on 
diesel generator. 

5. CONCLUSIONS 

This research paper presented a simulation of a 
hybrid energy system based on solar PV and Biomass with 
storage for learning institution based on optimization 
analysis, sensitivity analysis and sustainability. 
Technical, economic and sustainability factors were 
considered for the system modelling with a hybrid 
combination of Solar PV, Biomass generator with storage 
being the most sustainable power alternative to run the 
institution. With 100 % renewable penetration, the GHG 
emissions reduced by 43.24% when compared to the 
optimal alternative which had diesel generator included. 
Additionally, the sensitivity analysis trend led to 
elimination of diesel generator when solar irradiation 
and inflation rates were varied with NPV and COE being 
dependent on these variations. Moving forward, it is vital 
for the government and policy makers to collaborate in 
advancing these technologies, fostering innovation, and 
implementing policies that promote the widespread 
adoption of solar PV and biomass HPS. For future 
research, the study should be extended to other fields of 
energy planning. The Solar PV-Biomass HPS adoption will 
be limited to appropriate technology, location, and 
effective storage to cater for the intermittency of these 
HPS. The techno-economic study given in this research 
shows that other places with similar climatic and 
economic conditions are prospective candidates for 
deployment of the proposed hybrid system for electricity 
generation. 
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